www.kalvinesan.com 2022-23 **EDITION**

https://t.me/kalvinesan **SURA'S SCHOOL GUIDES**

2022-23

8 II

Updated **New Edition**

100% SUCCESS

- Prepared as per the updated New Textbook
- Exhaustive Additional Questions & Answers in all chapters.

SURAS

MATHEMATICS

Based on the updated new textbook

- Model Question Papers 1 to 6 (PTA) : Questions are incorporated in the appropriate sections.
- Govt. Model Question Paper-2019 [Govt. MQP-2019], Quarterly Exam - 2019 [QY-2019], Half yearly Exam - 2019 [HY-2019], Public Exam March- 2020 [March-2020] Govt. Supplementary Exam September - 2020 & August - 2021 [Sep -2020 & Aug. -2021] are incorporated in the appropriate sections.
- Govt. Supplementary Examination August 2021 Question Paper is given with answers.

Call @ 9600175757 8124301000 orders@surabooks.com Please Send your Materials, Question Papers & Answer Keys to Email : kalvinesan.com@gmail.com

Buy Online @

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Mathematics

12th Standard

Based on the Updated New Textbook

Salient Features

- Prepared as per the updated new textbook.
- Exhaustive Additional Questions & Answers in all chapters.
- Model Question Papers 1 to 6 (PTA) : Questions are incorporated in the appropriate sections.
- Govt. Model Question Paper-2019 [Govt. MQP-2019], Quarterly Exam 2019 [QY-2019], Half yearly Exam 2019 [HY-2019], Public Exam March- 2020 [Mar. -2020] Supplementary Exam September 2020 [Sep -2020] and Supplementary Exam August 2021 [Aug. -2021] are incorporated in the appropriate sections.

Govt. Supplementary Exam August 2021 question paper is given with answers.

www.kalvinesan.com

orders@surabooks.com

PH:9600175757 / 8124301000

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

2022-23 Edition

All rights reserved © SURA Publications.

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, digitally, electronically, mechanically, photocopying, recorded or otherwise, without the written permission of the publishers. Strict action will be taken.

ISBN: 978-93-92559-42-6

Code No: SG 322

Authors :

Mr. G.Selvaraj, M.Sc., M.Ed., M.Phil., Chennai

Edited by :

Mr. S. Sathish M.Sc., M.Phil.,

Reviewed by :

Mr.S. Niranjan, B.Tech., (NITT)PGDM (IIM) Chennai

Head Office:

1620, 'J' Block, 16th Main Road, Anna Nagar, **Chennai - 600 040. Phones**: 044-4862 9977, 044-486 27755. **Mob :** 81242 01000/ 81243 01000 **e-mail :** orders @surabooks.com **website :** www.surabooks.com

For More Information - Contact

Queries	:	enquiry@surabooks.com
For Order	:	orders@surabooks.com
Contact	:	96001 75757 / 8124301000
Whatsapp	:	8124201000 / 9840926027
Online Site	:	www.surabooks.com
For Free Stu	dv	Materials Visit http://tpkalvi in

Also available for Std. - XI

Guides :

- 🔹 சுராவின் தமிழ் உரைநூல்
- Sura's Smart English
- Sura's Mathematics (EM/TM)
- Sura's Physics (EM/TM)
- Sura's Chemistry (EM/TM)
- Sura's Bio-Botany & Botany (EM/TM) (Short Version & Long Version)

PREFACE

An equation has no meaning, for me unless it expresses a thought of GOD - Ramanujam [Statement to a friend]

Respected Principals, Correspondents, Head Masters / Head Mistresses, Teachers,

From the bottom of our heart, we at SURA Publications sincerely thank you for the support and patronage that you have extended to us for more than a decade.

It is in our sincerest effort we take the pride of releasing **Sura's Mathematics Guide Volume I and Volume II** for +2 Standard – Edition 2022-23. This guide has been authored and edited by qualified teachers having teaching experience for over a decade in their respective subject fields. This Guide has been reviewed by reputed Professors who are currently serving as Head of the Department in esteemed Universities and Colleges.

With due respect to Teachers, I would like to mention that this guide will serve as a teaching companion to qualified teachers. Also, this guide will be an excellent learning companion to students with exhaustive exercises and in-text questions in addition to precise answers for textual questions.

In complete cognizance of the dedicated role of Teachers, I completely believe that our students will learn the subject effectively with this guide and prove their excellence in Board Examinations.

I once again sincerely thank the Teachers, Parents and Students for supporting and valuing our efforts.

God Bless all.

Subash Raj, B.E., M.S. - Publisher Sura Publications

All the Best

- Sura's Bio-Zoology & Zoology (EM/TM) (Short Version & Long Version)
- Sura's Computer Science (EM/TM)
- Sura's Computer Applications (EM/TM)
- Sura's Commerce (EM/TM)
- Sura's Economics (EM/TM)
- Sura's Accountancy (EM/TM)
- Sura's Business Maths (EM)

21.12.202

orders@surabooks.com

PH:9600175757 / 8124301000

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

CONTENTS

1.	Applications of Matrices and Determinants	
2.	Complex Numbers	
3.	Theory of Equations	
4.	Inverse Trigonometric Functions	103 - 130
5.	Two Dimensional Analytical Geometry-II	131 - 170
6.	Applications of Vector Algebra	

www.kalvinesan.com

orders@surabooks.com

PH:9600175757 / 8124301000

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

CHAPTER 1

APPLICATIONS OF MATRICES AND DETERMINANTS

MUST KNOW DEFINITIONS

- + If $|A| \neq 0$, then A is a non-singular matrix and if |A| = 0, then A is a singular matrix.
- + The adjoint matrix of A is defined as the transpose of the matrix of co-factors of A.
- + If $AB = BA = I_n$, then the matrix B is called the inverse of A.
- + If a square matrix has an inverse, then it is unique.
- + A^{-1} exists if and only if A is non-singular.
- Singular matrix has no inverse.
- + If A is non singular and AB = AC, then B = C (left cancellation law).
- + If A is non singular and BA = CA then B = C (Right cancellation law).
- + If A and B are any two non-singular square matrices of order *n*, then adj (AB) = (adj B)(adj A)
- + A square matrix A is called orthogonal if $AA^{T} = A^{T}A = I$
- + Two matrices A and B of same order are said to the **equivalent** if one can be obtained from the other by the applications of elementary transformations (A~B).
- A non zero matrix is in a row echelon form if all zero rows occur as bottom rows of the matrix and if the first non – zero element in any lower row occurs to the right of the first non – zero entry in the higher row.
- + The **rank** of a matrix A is defined as the order of a highest order non vanishing minor of the matrix A $[\rho(A)]$.
- + The **rank** of a non zero matrix is equal to the number of non zero rows in a row echelon form of the matrix.
- An **elementary matrix** is a matrix which is obtained from an identity matrix by applying only one elementary transformation. Every non-singular matrix can be transformed to an identity matrix by a sequence of elementary row operations.
- A system of linear equations having atleast one solution is said to be **consistent**.

A system of linear equations having no solutions is said to be **inconsistent**.

orders@surabooks.com

PH:9600175757 / 8124301000

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Rouches capelli Theorem :

A system of equations AX = B is consistent if and if $\rho(A) = \rho([A|B])$

(i) If $\rho(A) = \rho([A|B]) = n$, the number of unknowns, then the system is consistent and has a unique solution.

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Chapter 1 - Applications of Matrices and Determinants

- (ii) If $\rho(A) = \rho([A|B]) = n k$, $k \neq 0$ then the system is consistent and has infinitely many solutions.
- (iii) If $\rho(A) \neq \rho([A|B])$, then the system is inconsistent and has no solution.

- If $\rho(A) = \rho([A|B]) = n$, then the system has a unique solution which is the trivial solution for (i) trivial solution, $|A| \neq 0$
- (ii) If $\rho(A) = \rho([A|B]) < n$, the system has a non trivial solution.

For non – trivial solution, $|\mathbf{A}| = 0$.

+
$$A^{-1} = \pm \frac{1}{\sqrt{|adj A|}} \cdot adj A$$
 + $A = \pm \frac{1}{\sqrt{|adj A|}} \cdot adj (adj A)$

Find the adjoint of the following :

(i)
$$\begin{bmatrix} -3 & 4 \\ 6 & 2 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2 \end{bmatrix}$ (iii) $\frac{1}{3} \begin{bmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{bmatrix}$
Sol. (i) Let A = $\begin{pmatrix} -3 & 4 \\ 6 & 2 \end{pmatrix}$
adj A = $\begin{pmatrix} 2 & -4 \\ -6 & -3 \end{pmatrix}$

[Interchange the elements in the leading diagonal and change the sign of the elements in off diagonal]

(ii) Let
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2 \end{pmatrix}^{T}$$

adj $A = \begin{pmatrix} +\begin{vmatrix} 4 & 1 \\ 7 & 2 \end{vmatrix} - \begin{vmatrix} 3 & 1 \\ 3 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 4 \\ 3 & 7 \end{vmatrix} + \begin{vmatrix} 3 & 4 \\ 3 & 7 \end{vmatrix}^{T}$
 $-\begin{vmatrix} 3 & 1 \\ 7 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} - \begin{vmatrix} 2 & 3 \\ 7 & 7 \end{vmatrix}^{T}$
 $+\begin{vmatrix} 3 & 1 \\ 4 & 1 \end{vmatrix} - \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix}^{T}$
 $= \begin{bmatrix} +(8-7) - (6-3) + (21-12) \\ -(6-7) + (4-3) - (14-9) \\ +(3-4) - (2-3) + (8-9) \end{bmatrix}^{T} = \begin{bmatrix} 1 & -3 & 9 \\ 1 & 1 & -5 \\ -1 & 1 & -1 \end{bmatrix}^{T}$
adj $A = \begin{bmatrix} 1 & 1 & -1 \\ -3 & 1 & 1 \\ 9 & -5 & -1 \end{bmatrix}$

(iii) Let
$$A = \begin{bmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{bmatrix}$$
 and $\lambda = \frac{1}{3}$
Since adj $(\lambda A) = \lambda^{n-1} (\text{adj } A)$
we get adj $\begin{pmatrix} \frac{1}{3} \begin{bmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{bmatrix} = \begin{pmatrix} \frac{1}{3} \end{pmatrix}^2$
adj $\begin{pmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{pmatrix}$
 \therefore Required adjoint matrix
$$= \frac{1}{9} \begin{bmatrix} + \begin{vmatrix} 1 & 2 \\ -2 & 2 \end{vmatrix} + \begin{vmatrix} -2 & 2 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} -2 & 2 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} -2 & 2 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} -2 & 2 \\ 1 & 2 \end{vmatrix}$$

$$= \frac{1}{9} \begin{bmatrix} |-2|^{2} | & | & 1 & 2 | & | & 1 & -2 | \\ - & 2 & 1 & | & | & 2 & 1 & | & -2 & | \\ - & 2 & 2 & | & | & 1 & 2 & | & -2 & | \\ + & 1 & 2 & | & -2 & | & | & 2 & 2 & | \\ + & 1 & 2 & | & -2 & 2 & | & +2 & 2 & | \\ - & 2 & 2 & | & +2 & 2 & | \\ + & 2 & 2 & | & +2 & 2 & | \\ - & 2 & 2 & | & +2 & 2 & | \\ - & 2 & 2 & | & | \\ = \frac{1}{9} \begin{bmatrix} (2+4) - (-4-2) + (4-1) & -(-4-2) \\ -(4+2) + (4-1) & -(-4-2) \\ +(4-1) - (4+2) + (2+4) \end{bmatrix}^{T}$$

$$= \frac{1}{9} \begin{bmatrix} 6 & 6 & 3 \\ -6 & 3 & 6 \\ 3 & -6 & 6 \end{bmatrix}^{T} = \frac{1}{9} \begin{bmatrix} 6 & -6 & 3 \\ 6 & 3 & -6 \\ 3 & 6 & 6 \end{bmatrix}$$

$$= \frac{3}{9} \begin{bmatrix} 2 & -2 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 2 \end{bmatrix}$$
[Taking 3 common from each entry]
$$= \frac{1}{3} \begin{bmatrix} 2 & -2 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 2 \end{bmatrix}$$

orders@surabooks.com

PH:9600175757 / 8124301000

2

2

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

📅 Sura's 🖛 XII Std - Mathematics 🖛 Volume I Find the inverse (if it exists) of the following : Taking 4 common from every entry we get, adj A = 4 $\begin{bmatrix} 6 & -1 & -1 \\ -1 & 6 & -1 \\ -1 & -1 & 6 \end{bmatrix}$ (i) $\begin{bmatrix} -2 & 4 \\ 1 & -3 \end{bmatrix}$ (ii) $\begin{vmatrix} 5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5 \end{vmatrix}$ (iii) $\begin{vmatrix} 2 & 3 & 1 \\ 3 & 4 & 1 \\ 2 & 7 & 2 \end{vmatrix}$ $\therefore A^{-1} = \frac{1}{|A|} \text{ adj } A = \frac{1}{112} \cdot 4 \begin{bmatrix} 6 & -1 & -1 \\ -1 & 6 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ Sol. (i) Let A = $\begin{bmatrix} -2 & 4 \\ 1 & -3 \end{bmatrix}$ $= \frac{1}{28} \begin{bmatrix} 6 & -1 & -1 \\ -1 & 6 & -1 \\ -1 & -1 & 6 \end{bmatrix}$ $|A| = \begin{vmatrix} -2 & 4 \\ 1 & -3 \end{vmatrix} = 6 - 4 = 2 \neq 0$ (iii) Let A = $\begin{bmatrix} 2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2 \end{bmatrix}$ Expanding along P Since A is non – singular, A⁻¹ exists $A^{-1} = \frac{1}{|A|} \operatorname{adj} A$ Now, adj A = $\begin{vmatrix} -3 & -4 \\ -1 & -2 \end{vmatrix}$ $|\mathbf{A}| = 2\begin{vmatrix} 4 & 1 \\ 7 & 2 \end{vmatrix} - 3\begin{vmatrix} 3 & 1 \\ 3 & 2 \end{vmatrix} + 1\begin{vmatrix} 3 & 4 \\ 3 & 7 \end{vmatrix}$ [Inter change the entries in leading diagonal and change the sign of elements in the off diagonal] $\therefore A^{-1} = \frac{1}{2} \begin{bmatrix} -3 & -4 \\ -1 & -2 \end{bmatrix}$ = 2(8-7) - 3(6-3) + 1(21-12)= 2(1) - 3(3) + 1(9) $= 2 - \cancel{9} + \cancel{9} = 2 \neq 0$ (ii) Let $A = \begin{bmatrix} 5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5 \end{bmatrix}$ Since A is a non-singular matrix, A⁻¹ exists adj A = $\begin{vmatrix} 4 & 1 \\ 7 & 2 \end{vmatrix} - \begin{vmatrix} 3 & 1 \\ 3 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 4 \\ 3 & 7 \end{vmatrix} \begin{vmatrix} - \\ 3 & 1 \\ 7 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} - \begin{vmatrix} 2 & 3 \\ 3 & 7 \end{vmatrix} + \begin{vmatrix} 3 & 1 \\ 4 & 1 \end{vmatrix} - \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} + \begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix}$ Expanding along R $|\mathbf{A}| = 5 \begin{vmatrix} 5 & 1 \\ 1 & 5 \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & 5 \end{vmatrix} + 1 \begin{vmatrix} 1 & 5 \\ 1 & 1 \end{vmatrix}$ = 5(25-1)-1(5-1)+1(1-5)= 5(24) - 1(4) + 1(-4) $= 120 - 4 - 4 = 120 - 8 = 112 \neq 0$ $= \begin{bmatrix} +(8-7)-(6-3)+(21-12)\\-(6-7)+(4-3)-(14-9)\\+(3-4)-(2-3)+(8-9) \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 1 & -3 & 9\\1 & 1 & -5\\-1 & 1 & -1 \end{bmatrix}^{\mathrm{T}}$ Since A is non singular, A⁻¹ exists. $+\begin{vmatrix} 5 & 1 \\ 1 & 5 \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 1 & 5 \end{vmatrix} + \begin{vmatrix} 1 & 5 \\ 1 & 1 \end{vmatrix}$ adj A = $\begin{vmatrix} 1 & 1 \\ 1 & 5 \end{vmatrix} + \begin{vmatrix} 5 & 1 \\ 1 & 5 \end{vmatrix} - \begin{vmatrix} 5 & 1 \\ 1 & 1 \end{vmatrix}$ adj A = $\begin{vmatrix} 1 & 1 & -1 \\ -3 & 1 & 1 \\ 9 & -5 & -1 \end{vmatrix}$ Now, $A^{-1} = \frac{1}{|A|}$ adj A $= \begin{bmatrix} +(25-1)-(5-1)+(1-5)\\ -(5-1)+(25-1)-(5-1) \end{bmatrix}^{T}$ \Rightarrow $A^{-1} = \frac{1}{2} \begin{vmatrix} 1 & 1 & -1 \\ -3 & 1 & 1 \\ 0 & -5 & -1 \end{vmatrix}$ +(1-5)-(5-1)+(25-1) $= \begin{bmatrix} 24 & -4 & -4 \\ -4 & 24 & -4 \\ -4 & 24 & -4 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 24 & -4 & -4 \\ -4 & 24 & -4 \\ -4 & -4 & 24 \end{bmatrix}$

orders@surabooks.com

PH:9600175757 / 8124301000

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Chapter 1 - Applications of Matrices and Determinants If F (α) = $\begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}$, show that $[\mathbf{F}(\alpha)]^{-1} = \mathbf{F}(-\alpha)$ [Hy - 2019] Sol. Given that F (α) = $\begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}$ Expanding along R_1 we get, $|F(\alpha)| = \cos \alpha \begin{vmatrix} 1 & 0 \\ 0 & \cos \alpha \end{vmatrix} - 0 + \sin \alpha \begin{vmatrix} 0 & 1 \\ -\sin \alpha & 0 \end{vmatrix}$ $= \cos \alpha (\cos - 0) + \sin \alpha (0 + \sin \alpha)$ $=\cos^2 + \sin^2 \alpha = 1 \neq 0$ Since F (α) is a non-singular matrix, $[F(\alpha)]^{-1}$ exists. Now, adj $(F(\alpha)) =$ $\begin{vmatrix} 1 & 0 \\ 0 & \cos \alpha \end{vmatrix} - \begin{vmatrix} 0 & 0 \\ \sin \alpha & \cos \alpha \end{vmatrix} + \begin{vmatrix} 0 & 1 \\ -\sin \alpha & 0 \end{vmatrix}$ $-\begin{vmatrix} 0 & \sin \alpha \\ 0 & \cos \alpha \end{vmatrix} + \begin{vmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{vmatrix} - \begin{vmatrix} \cos \alpha & 0 \\ -\sin \alpha & 0 \end{vmatrix} + \begin{vmatrix} 0 & \sin \alpha \\ 1 & 0 \end{vmatrix} - \begin{vmatrix} \cos \alpha & \sin \alpha \\ 0 & 0 \end{vmatrix} + \begin{vmatrix} \cos \alpha & 0 \\ 0 & 1 \end{vmatrix}$ $= \begin{bmatrix} +(\cos\alpha - 0) & -(0) & +(0 + \sin\alpha) \\ -(0) & +(\cos^2\alpha + \sin^2\alpha) & -(0) \\ +(0 - \sin\alpha) & -(0) & +(\cos - 0) \end{bmatrix}^{T}$ $= \begin{bmatrix} \cos \alpha & 0 & +\sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{bmatrix}$ $\therefore F(\alpha)^{-1} = \frac{1}{|F(\alpha)|} \operatorname{adj} (F(\alpha))$ $\begin{bmatrix} F(\alpha) \end{bmatrix}^{-1} = \frac{1}{1} \begin{bmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{bmatrix}$ $= \begin{bmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{bmatrix} \dots (1)$ Now, F(- α) = $\begin{bmatrix} \cos(-\alpha) & 0 & \sin(-\alpha) \\ 0 & 1 & 0 \\ -\sin(-\alpha) & 0 & \cos(-\alpha) \end{bmatrix}$

 $\cos \alpha = 0 - \sin \alpha$ 0 1 0 ... (2) _ $\sin \alpha = 0 \cos \alpha$ [$:: \cos \alpha$ is an even function, $\cos(-\alpha) = \cos \alpha$ and $\sin \alpha$ is an odd function, $\sin (-\alpha) = -\sin \alpha$ From (1) and (2) $[F(\alpha)]^{-1} = F(-\alpha)$ Hence proved. If $A = \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix}$, show that $A^2 - 3A - 7I_2 = 0_2$. Hence find A⁻ Sol. Given A = $\begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix}$ $A^{2} = \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 25 - 3 & 15 - 6 \\ -5 + 2 & -3 + 4 \end{bmatrix}$ $= \begin{bmatrix} 22 & 9 \\ -3 & 1 \end{bmatrix} -3 \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix} -7 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 22 - 15 - 7 & 9 - 9 + 0 \\ -3 + 3 + 0 & 1 + 6 - 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0_2$ Hence proved. $\therefore A^2 - 3A - 7I_2 = 0$ Post – multiplying by A^{-1} we get, A^{2} . $A^{-1} - 3AA^{-1} - 7I_{2}A^{-1} = 0.A^{-1}$ \Rightarrow A(AA⁻¹) - 3 (AA⁻¹) - 7(A⁻¹) = 0 [:: $I_2 A^{-1} = A^{-1}$ and (0) $A^{-1} = 0$] $\Rightarrow AI - 3I - 7A^{-1} = 0 \qquad [\because AA^{-1} = I]$ \Rightarrow AI – 3I = 7A⁻¹

$$\Rightarrow A^{-1} = \frac{1}{7} [A - 3I] [:: AI = A]$$

$$\Rightarrow A^{-1} = \frac{1}{7} \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix} - 3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}]$$

$$\Rightarrow A^{-1} = \frac{1}{7} \begin{bmatrix} 5 - 3 & 3 - 0 \\ -1 - 0 & -2 - 3 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 2 & 3 \\ -1 & -5 \end{bmatrix}$$

$$: A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & 3 \\ -1 & -5 \end{bmatrix}$$

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

🏹 Sura's 🔿 XII Std - Mathematics → Volume I

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

5. If $A = \frac{1}{9} \begin{bmatrix} -8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & -8 & 4 \end{bmatrix}$, prove that $A^{-1} = A^{T}$. To prove $A^{-1} = A^{T}$ $AA^{-1} = AA^{T}$ It is enough to prove $AA^{T} = I$ $AA^{T} = \frac{1}{9} \begin{vmatrix} -8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & -8 & 4 \end{vmatrix} = \frac{1}{9} \begin{bmatrix} -8 & 1 & 4 \\ 1 & 4 & -8 \\ 4 & 7 & 4 \end{bmatrix}$ $= \frac{1}{81} \begin{bmatrix} 64+1+16 & -32+4+28 & -8-8+16 \\ -32+4+28 & 16+16+49 & 4-32-28 \\ -8-8+16 & 4-32+28 & 1+64+16 \end{bmatrix}$ $= \frac{1}{81} \begin{bmatrix} 81 & 0 & 0 \\ 0 & 81 & 0 \\ 0 & 0 & 81 \end{bmatrix} = \frac{81}{81} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{I}$ Therefore $A^{-1} = A^{T}$ 6. If A = $\begin{bmatrix} 8 & -4 \\ -5 & 3 \end{bmatrix}$, verify that A(adj A) = $\begin{aligned} \mathbf{A} = \|\mathbf{A}\| \, \mathbf{I}_2, & [Sep. - 2020; Aug. - 2021] \\ Given A = \begin{bmatrix} 8 & -4 \\ -5 & 3 \end{bmatrix} \end{aligned}$ $(adj A) A = |A| I_2$. $adj A = \begin{bmatrix} 3 & 4 \\ 5 & 9 \end{bmatrix}$ [Interchange the elements in the leading diagonal and change the sign of the elements in the off diagonal] |A| = 24 - 2 $\therefore A (adj A) = \begin{bmatrix} 8 & -4 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 5 & 8 \end{bmatrix}$ $= \begin{bmatrix} 24 - 20 & 32 - 32 \\ -15 + 15 & -20 + 24 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$...(1) $(adj A)(A) = \begin{bmatrix} 3 & 4 \\ 5 & 8 \end{bmatrix} \begin{bmatrix} 8 & -4 \\ -5 & 3 \end{bmatrix}$ $= \begin{bmatrix} 24 - 20 & -12 + 12 \\ 40 - 40 & -20 + 24 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$...(2)

 $|\mathbf{A}| \mathbf{I}_2 = 4 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \qquad \dots (3)$

From (1), (2) and (3), it is proved that A (adj A) = (adj A) A = $|A| I_2$ is verified.

7. If A = $\begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix}$ and B = $\begin{bmatrix} -1 & -3 \\ 5 & 2 \end{bmatrix}$, verify that $(\mathbf{AB})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$. Sol. Given A = $\begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix}$ and B = $\begin{vmatrix} -1 & -3 \\ 5 & 2 \end{vmatrix}$ $AB = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix} \begin{bmatrix} -1 & -3 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} -3+10 & -9+4 \\ -7+25 & -21+10 \end{bmatrix}$ $=\begin{bmatrix}7 & -5\\18 & -11\end{bmatrix}$ $|AB| = -77 + 90 = 13 \neq 0 \Rightarrow (AB)^{-1}$ exists $|A| = 15 - 14 = 1 \neq 0 \Rightarrow A^{-1}$ exists $|\mathbf{B}| = -2 + 15 = 13 \neq 0 \Rightarrow \mathbf{B}^{-1}$ exists $(AB)^{-1} = \frac{1}{|AB|} adj (AB) = \frac{1}{13} \begin{pmatrix} -11 & 5\\ -18 & 7 \end{pmatrix} ...(1)$ $B^{-1} = \frac{1}{|B|} (adj B)$ $=\frac{1}{13}\begin{pmatrix} 2 & 3 \\ -5 & -1 \end{pmatrix}$ $A^{-1} = \frac{1}{|A|} (adj A)$ $=\frac{1}{1}\begin{pmatrix} 5 & -2\\ -7 & 3 \end{pmatrix}$ $= \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix}$ $\therefore B^{-1} A^{-1} = \frac{1}{13} \begin{pmatrix} 2 & 3 \\ -5 & -1 \end{pmatrix} \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix}$ $=\frac{1}{13}\begin{pmatrix}10-21 & -4+9\\-25+7 & 10-3\end{pmatrix}$ $=\frac{1}{13}\begin{pmatrix}-11 & 5\\-18 & 7\end{pmatrix}$...(2) From (1) and (2) it is prove that $(AB)^{-1} = B^{-1}A^{-1}$ 8. If adj (A) = $\begin{bmatrix} 2 & -4 & 2 \\ -3 & 12 & -7 \\ -2 & 0 & 2 \end{bmatrix}$, find A. Sol. Given adj A = $\begin{bmatrix} 2 & -4 & 2 \\ -3 & 12 & -7 \\ -2 & 0 & 2 \end{bmatrix}$

orders@surabooks.com

PH:9600175757 / 8124301000

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Chapter 1 - Applications of Matrices and Determinants We know that $A = \pm \frac{1}{\sqrt{|adjA|}}$ adj (adj A) ...(1) 9. If $adj(A) = \begin{vmatrix} 0 & -2 & v \\ 6 & 2 & -6 \\ -3 & 0 & 6 \end{vmatrix}$, find A⁻¹. [PTA-6] $|\text{adj A}| = 2 \begin{vmatrix} 12 & -7 \\ 0 & 2 \end{vmatrix} + 4 \begin{vmatrix} -3 & -7 \\ -2 & 2 \end{vmatrix} + 2 \begin{vmatrix} -3 & 12 \\ -2 & 0 \end{vmatrix}$ $2 \begin{vmatrix} 2 \\ -2 \\ -2 \end{vmatrix}$ [Expanded along R₁] Sol. Given adj (A) = $\begin{bmatrix} 0 & -2 & 0 \\ 6 & 2 & -6 \\ 2 & 0 & -6 \end{bmatrix}$ = 2(24-0) + 4(-6-14) + 2(0+24)= 2(24) + 4(-20) + 2(24) = 48 - 80 + 48We know that $A^{-1} = \pm \frac{1}{\sqrt{|adiA|}}$ (adj A) ...(1) = 96 - 80 = 16Now, adj (adj A) $|\text{adj A}| = 0 + 2 \begin{vmatrix} 6 & -6 \\ -3 & 6 \end{vmatrix} + 0$ $+ \begin{vmatrix} 12 & -7 \\ 0 & 2 \end{vmatrix} - \begin{vmatrix} -3 & -7 \\ -2 & 2 \end{vmatrix} + \begin{vmatrix} -3 & 12 \\ -2 & 0 \end{vmatrix}$ [Expanded along R₁] $= \begin{vmatrix} -|-4 & 2 \\ 0 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 2 \\ -2 & 2 \end{vmatrix} - \begin{vmatrix} 2 & -4 \\ -2 & 0 \end{vmatrix}$ = 2(36-18) = 2(18) = 36 $\begin{vmatrix} -4 & 2 \\ 12 & -7 \end{vmatrix} - \begin{vmatrix} 2 & 2 \\ -3 & -7 \end{vmatrix} + \begin{vmatrix} 2 & -4 \\ -3 & 12 \end{vmatrix}$ $\therefore A^{-1} = \pm \frac{1}{\sqrt{36}} \begin{vmatrix} 0 & -2 & 0 \\ 6 & 2 & -6 \\ 3 & 0 & 6 \end{vmatrix}$ +(24-0)-(-6-14)+(0+24) $= \left| -(-8-0) + (4+4) - (0-8) \right|$ $= \pm \frac{1}{6} \begin{bmatrix} 0 & -2 & 0 \\ 6 & 2 & -6 \\ 2 & 0 & 6 \end{bmatrix}$ +(28-24)-(-14+6)+(24-12) $= \begin{bmatrix} 24 & 20 & 24 \\ 8 & 8 & 8 \\ 4 & 8 & 12 \end{bmatrix}^{T}$ $= \begin{bmatrix} 24 & 8 & 4 \\ 20 & 8 & 8 \\ 24 & 8 & 12 \end{bmatrix}$ **10.** Find adj (adj (A)) if adj A = $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$. Sol. Given adj A = $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$. $= 4 \begin{bmatrix} 6 & 2 & 1 \\ 5 & 2 & 2 \\ 6 & 2 & 3 \end{bmatrix}$...(3) $\begin{bmatrix} + \begin{vmatrix} 2 & 0 \\ 0 & 1 \end{vmatrix} - \begin{vmatrix} 0 & 0 \\ -1 & 1 \end{vmatrix} + \begin{vmatrix} 0 & 2 \\ -1 & 0 \end{vmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{vmatrix}$ Now adj(adj A) = $\begin{vmatrix} 0 & 1 \\ - \begin{vmatrix} 0 & 1 \\ 0 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} - \begin{vmatrix} 1 & 0 \\ -1 & 0 \end{vmatrix} + \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} + \begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix}$ Substituting (2) and (3) in (1) we get, $A = \pm \frac{1}{\sqrt{16}} \cdot 4 \begin{bmatrix} 6 & 2 & 1 \\ 5 & 2 & 2 \end{bmatrix}$ $A = \pm \frac{4}{4} \begin{bmatrix} 6 & 2 & 1 \\ 5 & 2 & 2 \\ 6 & 2 & 3 \end{bmatrix}$ $= \begin{bmatrix} +(2-0) & -(0) & +(0+2) \\ -(0) & +(1+1) & -(0) \\ +(0-2) & -(0) & +(2-0) \end{bmatrix}^{T} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ -2 & 0 & 2 \end{bmatrix}^{T}$ adj (adj A) $= \begin{bmatrix} 2 & 0 & -2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}$ $= \pm \begin{bmatrix} 6 & 2 & 1 \\ 5 & 2 & 2 \\ 6 & 2 & 2 \end{bmatrix}$

orders@surabooks.com

PH:9600175757 / 8124301000

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

CHAPTER

COMPLEX NUMBERS

MUST KNOW DEFINITIONS

- + If a Complex number is of the form x + iy where x is a real part and y is the imaginary part of the complex number.
- $z_1 = z_2$ if Re $(z_1) =$ Re (z_2) and Im $(z_1) =$ Im (z_2)

Properties of complex numbers: Under Additions

- Let z_1 , z_2 and z_3 are complex numbers.
 - (i) Closure property $(z_1 + z_2 \text{ is a complex number})$
 - (ii) Commutative property $(z_1 + z_2 = z_2 + z_1)$
 - (iii) Associative property $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$
 - (iv) Additive identity (z + 0 = 0 + z = z)
 - (v) Additive inverse (z + -z) = (-z + z) = 0
- + Under Multiplication:
 - (i) Closure property $(z_1 z_2 \text{ is also a complex number})$
 - (ii) Commutative property $(z_1 z_2 = z_2 z_1)$
 - (iii) Associative property $(z_1 z_2) z_3 = z_1 (z_2 z_3)$
 - (iv) Multiplicative identity $(z_1 \cdot 1 = 1, z_1 = z_1)$
 - (v) Multiplicative inverse $z.w = w.z = 1 \Rightarrow w = z^{-1}$
- Distributive property (Multiplication distributes over addition)
 - $z_1 (z_2 + z_3) = z_1 z_2 + z_1 z_3$

Also,
$$(z_1 + z_2) z_3 = z_1 z_3 + z_2 z_3$$

- Conjugate of x + iy is x iy
- If z = x + iy then $|z| = \sqrt{x^2 + y^2}$
- $|z z_0| = r$ is the equation of circle where z_0 is a fixed complex number and r is the distance from z_0 to z.
- Polar form of z = x + iy is $z = r (\cos \theta + i \sin \theta)$

where $r = \sqrt{x^2 + y^2}$ and $\tan \theta = \frac{y}{x}$.

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Chapter 2 - Complex Numbers

+ Let
$$a + ib = \sqrt{x + iy}$$
 then
 $x = \pm \sqrt{\frac{\sqrt{a^2 + b^2} + a}{2}}$,
 $y = \pm \sqrt{\frac{\sqrt{a^2 + b^2} - a}{2}}$
+ $|z - z_0| < r$ represents the points interior of the circle.
+ $|z - z_0| > r$ represents the points exterior of the circle.
+ $arg(z_1 z_2) = arg z_1 + arg z_2$
+ $arg(\frac{z}{z_2}) = arg z_1 - arg z_2$
+ $arg(z_1^n) = n arg z$
+ Alternate form of $\cos \theta + i \sin \theta$ is $\cos (2k\pi + \theta) + i \sin (2k\pi + \theta)$, $k \in \mathbb{Z}$.
Fullor's formula
+ $e^{i\theta} = \cos \theta + i \sin \theta$ or $z = re^{i\theta}$
+ If $z = r(\cos \theta + i \sin \theta)$ then
 $z^{-1} = \frac{1}{r}(\cos \theta - i \sin \theta)$
+ $z_1 z_2 = r_1 r_2 [\cos(\theta_1 - \theta_2) + i \sin(\theta_1 + \theta_2)]$
+ $\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2)]$
+ $(\cos \theta - i \sin \theta)^n = \cos n\theta - i \sin n\theta$ and $(\cos \theta + i \sin \theta)^n = \cos n\theta - i \sin n\theta$
+ $(\cos \theta - i \sin \theta)^n = \cos n\theta - i \sin n\theta$ and $\sin \theta + i \cos \theta = i (\cos \theta - i \sin \theta)$
+ $1 + \omega + \omega^2 + \dots + \omega^{n-1} = 0$
where ω is the $n^{th} - r \cot of$ unity.
 $1 \omega \omega^2 \dots \omega^{n-1} = (-1)^{n-1}$
 $\omega^{n-k} = \omega^{-k} = (\overline{\omega})^k \ 0 \le k \le n - 1$

EXERCISE 2.1

10.00

10.10

Simplify the following:

1.
$$i^{1947} + i^{1950}$$
 2. $i^{1948} - i^{-1869}$
3. $\sum_{n=1}^{12} i^n$ 4. $i^{59} + \frac{1}{i^{59}}$
5. $i i^2 i^3 \dots i^{2000}$ 6. $\sum_{n=1}^{10} i^{n+50}$
1. $i^{1947} + i^{1950} = i^{1944} \cdot i^3 + i^{1948} \cdot i^2$
[\therefore 1944 is a multiple of 4 and 1948 is also a multiple of 4]
 $= (i^4)^{486} \cdot i^2 \cdot i^1 + (i^4)^{487} \cdot i^2 [i^4 = 1]$

$$= (1^{486}) (-1) (i) + (1)^{487} (-1) [i^{2} = -1]$$

$$= -i - 1$$

$$= -1 - i$$

2. $i^{1948} - i^{-1869} = (i^{4})^{487} - [i^{-1868} \cdot i^{-1}]$

$$= 1^{487} - \left[\left(i^{4} \right)^{-467} \cdot \frac{1}{i} \right] \left[\because i^{4} = 1 \right]$$

$$= 1 - \left[1 \cdot (-i) \right] \qquad [\because i^{-1} = \frac{1}{i} = -i]$$

[One power any number is 1]

$$= 1 + i$$

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

3.
$$\sum_{n=1}^{12} i^n = (i^1 + i^2 + i^3 + i^4) + (i^5 + i^6 + i^7 + i^8) + (i^9 + i^{10} + i^{11} + i^{12}) = (i - 1 - i + 1) + (i^{4+1} + i^{4+2} + i^{4+3} + (i^4)^2) + (i^{8+1} + i^{8+2} + i^{8+3} + (i^4)^3) = 0 + (i + i^2 + i^3 + i^4) + (i^1 + i^2 + i^3 + i^4) = 0 + (i - 1 - i + 1) + (i - 1 - i + 1) = 0 + 0 + 0 = 0$$

4.
$$i^{4\times 14+3} + i^{-(4\times 14+3)}$$
 [Hy - 2019]
= $(i^4)^{14} \cdot i^3 + (i^4)^{-14} \cdot i^{-3}$

$$= 1. i^{3} + 1.i^{-3} \qquad [\because i^{4} = 1]$$

= $-i + i$ $[\because i^{3} = -i \text{ and } i^{-3} = i]$
= $0.$

5.
$$i, i^2 i^3 \dots i^{2000} = i^{1+2+3+\dots+2000}$$

$$= \frac{2000 \times 2001}{i} \quad [\because 1 + 2 + 3 + \dots n = \frac{n(n+1)}{2}]$$
$$= i^{1000 \times 2001} = i^{2001000} = 1$$

[:: 2001000 is divisible by 4 as its last two digits are divisible by 4]

6.
$$i^{1+50} + i^{2+50} + \dots + i^{10+50}$$

 $= i^{51} + i^{52} + \dots + i^{60}$
Taking i^{50} common we get,
 $i^{50} [(i + i^2 + i^3 + i^4) + (i^5 + i^6 + i^7 + i^8) + i^9 + i^{10}]$
 $= i^{50} [0 + (i^{4+1} + i^{4+2} + i^{4+3} + i^{4+4}) + (i^{8+1} + i^{8+2})]$
 $= i^{50} [0 + 0 + i + i^2] [\because i + i^2 + i^3 + i^4 = 0]$
 $= i^{50} [i - 1] = i^{48+2} (i - 1)$
 $= i^2 (i - 1) [\because i^{48} = 1]$
 $= -1 (i - 1) = -i + 1 = 1 - i$

EXERCISE 2.2

Evaluate the following if z = 5 -2i and w = -1+3i

(i) z + w (ii) z - iw

- (iii) 2z + 3w (iv) z w
- (v) $z^2+2zw+w^2$ (vi) $(z+w)^2$

🎲 Sura's 🛶 XII Std - Mathematics 🛶 Volume I

(i)
$$z + w$$

 $= (5 - 2i) + (-1 + 3i) = (5 - 1) + i (-2 + 3)$
 $= 4 + i (1) = 4 + i$
(ii) $z - iw$
 $= (5 - 2i) - i (-1 + 3i)$
 $= (5 - 2i) + (+i - 3i^2)$
 $= 5 - 2i + i - 3 (-1) = 5 - i + 3 = 8 - i$
(iii) $2z + 3w$
 $= 2 (5 - 2i) + 3 (-1 + 3i) = 10 - 4i - 3 + 9i$
 $= (10 - 3) + i (-4 + 9) = 7 + 5i$
(iv) $z w$
 $= (5 - 2i) (-1 + 3i) = -5 + 15i + 2i - 6i^2$
 $= -5 + 17i - 6 (-1)$
 $= -5 + 17i + 6 = 1 + 17i$
(v) $z^2 + 2zw + w^2$
 $= (5 - 2i)^2 + 2 (5 - 2i) (-1 + 3i) + (-1 + 3i)^2$
 $= 25 + 4i^2 - 20i + 2[-5 + 15i + 2i - 6i^2]$
 $+ 1 + 9i^2 - 6i$
 $= 25 - 4 - 20i + 2 (-5 + 17i + 6) + 1 - 9 - 6i$
 $[\because i^2 = -1]$
 $= 21 - 20i + 2 + 34i - 8 - 6i = 15 + 8i$
(vi) $(z + w)^2$
 $= [(5 - 2i) + (-1 + 3i)]^2 = (4 + i)^2$
 $= 16 + 8i - 1 = 16 - 1 + 8i = 15 + 8i$
Given the complex number $z = 2 + 3i$, represent
the complex numbers in Argand diagram.
(i) $z, iz, and z + iz$ (ii) $z, -iz, and z - iz$.
(i) Represent z, iz and $z + iz$ in the Argand
diagram.
 $z = 2 + 3i$ can be represented as (2, 3)
 $iz = i (2 + 3i) = 2i + 3i^2 = 2i - 3 = -3 + 2i$
can be represented as (-3, 2)
 $z + iz = 2 + 3i - 3 + 2i = -1 + 5i$ can be represented

z + iz (-1, 5)	0 5	Imaginary axis	
iz (-3, 2) 😋	4 3 2	<i>e z</i> (2, 3)	
			Real
-6 -5 -4 -3 -2 -	-1 0 -1	1 2 3 4	5 axis

as (-1, 5) in the argand diagram.

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Chapter 2 - Complex Numbers

- (ii) z = 2 + 3i can be represented as (2, 3) $-iz = -i (2 + 3i) = -2i - 3i^2 = -2i - 3 (-1)$ = 3 - 2i
 - z iz = 2 + 3i + 3 2i = 5 + i can be
 - represented as (5, 1) in the Argand place.

3. Find the values of the real numbers *x* and *y*, if the complex numbers

(3 - i)x - (2 - i)y + 2i + 5 and 2x + (-1 + 2i)y + 3 + 2i are equal [Hy - 2019]

Sol. Given (3-i) x - (2-i) y + 2i + 5= 2x + (-1 + 2i)y + 3 + 2i $\Rightarrow 3x - ix - 2y + iy + 2i + 5 = 2x - y + 2iy + 3 + 2i$ choosing the real and imaginary parts (3x-2y+5) + i(-x+y+2) = 2x - y + 3 + i(2y+2)Equating the real and imaginary parts both sides, we get 3x - 2y + 5 = 2x - y + 33x - 2y + 5 - 2x + y - 3 = 0 \Rightarrow x - y = -2... (1) \Rightarrow -x + y + 2 = 2y + 2-x + y + 2 - 2y - 2 = 0 \Rightarrow $-x - y = 0 \Rightarrow x + y = 0$... (2) \Rightarrow (1) - (2) we get, x - y = -2x + y = 0

2x = -2 x = -1Substituting x = -1 in (2) we get, $-1+y = 0 \Rightarrow y = 1$ $\therefore x = -1$ and y = 1

EXERCISE 2.3 If $z_1 = 1 - 3i$, $z_2 = -4i$ and $z_3 = 5$, show that (i) $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$ (ii) $(z_1 z_2) z_3 = z_1 (z_2 z_3)$ Sol. (i) $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$ Given $z_1 = 1 - 3i$, $z_2 = -4i$ and $z_3 = 5$ LHS = $(z_1 + z_2) + z_3$ = [1 - 3i + (-4i)] + 5= [1-7i] + 5 = 6 - 7iRHS = $z_1 + (z_2 + z_3)$ = 1 - 3i + (-4i + 5) = 6 - 7iLHS = RHS $\therefore (z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$ (ii) $(z_1 z_2) z_3 = z_1 (z_2 z_3)$ $LHS = (z_1 z_2) z_3$ $= [(1 - 3i) (-4i)] 5 = [-4i + 12i^{2}] 5$ = (-4i - 12) 5 = -20i - 60RHS = $z_1 (z_2, z_3)$ = (1 - 3i) [(-4i) 5] = (1 - 3i) (-20i) $= -20i + 60i^2 = -20i - 60$ LHS = RHS $\therefore (z_1 \, z_2) \, z_3 = z_1 \, (z_2 \, z_3)$ If $z_1 = 3$, $z_2 = 7i$, and $z_3 = 5 + 4i$, show that (i) $z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$ (ii) $(z_1 + z_2) z_3 = z_1 z_3 + z_2 z_3$ Sol. (i) $z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$ Given $z_1 = 3$, $z_2 = -7i$, $z_3 = 5 + 4i$ LHS = $z_1 (z_2 + z_3)$ = 3 [-7i + 5 + 4i]3[5-3i] = 15-9iRHS = $z_1 z_2 + z_1 z_3$ = 3(-7i) + 3(5+4i)-21i + 15 + 12i_ = -9i + 15 = 15 - 9iLHS = RHS $\therefore z_1 (z_2 + z_3) = z_1 z_2 + z_1 z_3$

(ii)
$$(z_1 + z_2) z_3 = z_1 z_3 + z_2 z_3$$

LHS = $(z_1 + z_2) z_3$
= $(3 - 7i) (5 + 4i)$
= $15 + 12i - 35i - 28i^2$
= $15 - 23i + 28 = 43 - 23i$
RHS = $z_1 z_3 + z_2 z_3$
= $3 (5 + 4i) + (-7i) (5 + 4i)$

orders@surabooks.com

PH:9600175757 / 8124301000

CHAPTER

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

THEORY OF EQUATIONS

MUST KNOW DEFINITIONS

- For the quadratic equation $ax^2 + bx + c = 0$,
 - (i) $\Delta = b^2 4ac > 0$ iff the roots are real and distinct
 - (ii) $\Delta = b^2 4ac \le 0$ iff the equation has no real roots

Fundamental theorem of algebra

Every polynomial equation of degree n has at least one root in C.

Complex conjugate root theorem

- + If a complex number z_0 is a root of a polynomial equation with real co-efficients, then complex conjugate $\overline{z_0}$ is also a root.
- + If $p + \sqrt{q}$ is a root of a quadratic equation then $p \sqrt{q}$ is also a root of the same equation where p. q are rational and \sqrt{q} is irrational.
- + If $\sqrt{p} + \sqrt{q}$ is a root of a polynomial equation then $\sqrt{p} \sqrt{q}$, $-\sqrt{p} + \sqrt{q}$, and $-\sqrt{p} \sqrt{q}$ are also roots of the same equation.
- + If the sum of the co-efficients in p(x) = 0. Then 1 is a root of p(x).
- + If the sum of the co-efficients of odd powers = sum of the co-efficients of even powers, then -1 is a root of p(x).

Rational root theorem :

+ Let $a_n x^n + \dots + a_1 x + a_0$ with $a_n \neq 0$, $a_0 \neq 0$ be a polynomial with integer co-efficients. If $\frac{p}{q}$ with (p, q) = 1, is a root of the polynomial, then p is a factor of a_0 and q is a factor of a_n

Reciprocal polynomial :

A polynomial p(x) of degree n is said to be a reciprocal polynomial if one of the conditions is true

i)
$$p(x) = x^n \ p\left(\frac{1}{x}\right)$$
 (ii) $p(x) = -x^n \ p\left(\frac{1}{x}\right)$

A change of sign in the co-efficients is said to occur at the j^{th} power of x in p(x) if the co-efficient of x^{j+1} and the co-efficient of x^j (or) co-efficient. of x^{j-1} , the co-efficient of x^j are of different signs.

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

🕎 Sura's 🔿 XII Std - Mathematics 🍑 Volume I

IMPORTANT FORMULAE TO REMEMBER

Vieta's formula for quadratic equation If α , β are the roots of $ax^2 + bx + c = 0$ then $\alpha + \beta = -\frac{b}{a}$ and $\alpha \beta = \frac{c}{a}$ Also, $x^2 - x$ (sum of the roots) + product of the roots = 0 Vieta's formula for polynomial of degree 3. Co-efficient. of $x^2 = -(\alpha + \beta + \gamma)$ where α , β , γ are its roots Co-efficient of $x = \alpha \beta + \beta \gamma + \gamma \alpha$ and constant term $= -\alpha \beta \gamma$ Vieta's formula for polynomial equation of degree n > 3Co-efficient of $x^{n-1} = \sum_{1} = -\sum \alpha_{1}$ Co-efficient of $x^{n-2} = \sum_{2} = -\sum_{n=1}^{\infty} \alpha_{1} \alpha_{2}$ Co-efficient of $x^{n-3} = \sum_3 = -\sum \alpha_1 \alpha_2 \alpha_3$ Co-efficient of $x = \sum_{n=1}^{\infty} = (-1)^{n-1} \sum \alpha_1 \alpha_2 \qquad \alpha_{n-1}$ Co-efficient of x^0 = constant term = $\sum_n = (-1)^n \alpha_1 \alpha_2 \dots \alpha_n$. A polynomial equation $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$ $(a_n \neq 0)$ is a reciprocal equation iff one of the following statements is true. (i) $a_n = a_0, a_{n-1} = a_1, a_{n-2} = a_2, \dots$ (ii) $a_n = -a_0, a_{n-1} = -a_1, a_{n-2} = -a_2, \dots$

If p is the number of positive zeros of a polynomial p(x) with real co-efficients and s is the number of sign changes in co-efficient of p(x), then s - p is a non negative even integer

EXERCISE 3.1

- If the sides of a cubic box are increased by 1, 2, 3 units respectively to form a cuboid, then the volume is increased by 52 cubic units. Find the volume of the cuboid. [Aug. - 2021]
- Sol. Let x be the side and V be the volume of the cube, then volume of the cube

 $\mathbf{V} = x \times x \times x = x^3$

If the sides are increased by 1, 2, 3 units, Volume of the cuboid is equal to volume of the cube increased by 52

V + 52 = $(x + 1) \times (x + 2) \times (x + 3)$ If α , β , and γ are the roots, then If $\alpha = -1, \beta = -2$ and $\gamma = -3$.

$$\Sigma_{1} = (\alpha + \beta + \gamma)$$

= -1 - 2 - 3 = -6
$$\Sigma_{2} = (\alpha\beta + \alpha\gamma + \beta\gamma)$$

= (-1)(-2) + (-1)(-3) + (-2)(-3)
= 2 + 3 + 6 = 11
$$\Sigma_{3} = (\alpha\beta\gamma) = (-1)(-2)(-3) = -6$$

Hence, the volume of the cuboid equation is $x^{3} - \Sigma_{1}x^{2} + \Sigma_{2}x - \Sigma^{3}$ $= x^{3} - (-6)x^{2} + (11)x - (-6)$ $= x^{3} + 6x^{2} + 11x + 6$

$$= x^{3} + 6x^{2} + 11x + 6$$

$$\therefore V + 52 = x^{3} + 6x^{2} + 11x + 6$$

$$x^{3} + 52 = x^{3} + 6x^{2} + 11x + 6$$

$$x^{3} + 6x^{2} + 11x + 6 - x^{3} - 52 = 0$$

$$6x^{2} + 11x - 46 = 0$$

$$(6x + 23)(x - 2) = 0$$

$$6x + 23 = 0 \text{ gives,}$$

$$6x = -23$$

$$x = -\frac{23}{6}, \text{ is impossible}$$

So $x - 2 = 0$ gives,

$$x = 2$$

Substituting $x = 2$, volume of the cuboid

$$V = (2 + 1) \times (2 + 2) \times (2 + 3)$$

$$= (3) \times (4) \times (5)$$

$$= 60$$
 cubic units.

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Chapter 3 - Theory of Equations

Construct a cubic equation with roots (ii) 1, 1, and -21, 2, and 3 **(i)** (iii) 2, $\frac{1}{2}$ and 1 Sol. (i) 1,2, and 3 Given roots are 1,2 and 3 Here $\alpha = 1$, $\beta = 2$ and $\gamma = 3$ A cubic polynomial equation whose roots are α , β , γ is $x^{3} - (\alpha + \beta + \gamma)x^{2} + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma = 0$ x^{3} -(1+2+3) x^{2} +(2+6+3)x-6=0 \Rightarrow $x^3 - 6x^2 + 11x - 6 = 0.$ \Rightarrow (ii) Here $\alpha = 1$, $\beta = 1$ and $\gamma = -2$:. The required cubic equation is $x^{3} - (1 + 1 - 2) x^{2} + (1 - 2 - 2) x - (1)(1)(-2) = 0$ $x^{3} - 0x^{2} - 3x + 2 = 0$ $x^3 - 3x + 2 = 0.$ (iii) Here $\alpha = 2$, $\beta = \frac{1}{2}$ and $\gamma = 1$ \therefore The cubic equation is $x^{3} - \left(2 + \frac{1}{2} + 1\right)x^{2} + \left(1 + \frac{1}{2} + 2\right)x - 1 = 0$ $\Rightarrow 2x^3 - 7x^2 + 7x - 2 = 0$ If α , β and γ are the roots of the cubic equation $x^3 + 2x^2 + 3x + 4 = 0$, form a cubic equation whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma},$ $2\alpha, 2\beta, 2\gamma,$ [Hy - 2019] (ii) (i) (iii) $-\alpha, -\beta, -\gamma$ Sol. The roots of $x^3 + 2x^2 + 3x + 4 = 0$ are α , β , γ $\therefore \alpha + \beta + \gamma = -$ co-efficient of $x^2 = -2$...(1) $\alpha\beta + \beta\gamma + \gamma\alpha = \text{co-efficient of } x = 3$...(2) $-\alpha \beta \gamma = +4 \Rightarrow \alpha \beta \gamma = -4$...(3) (i) Form a cubic equation whose roots are 2α , 2β , 2γ $2\alpha + 2\beta + 2\gamma = 2(\alpha + \beta + \gamma) = 2(-2) = -4$ [from (1)] $4\alpha\beta + 4\beta\gamma + 4\gamma\alpha = 4 (\alpha\beta + \beta\gamma + \gamma\alpha) = 4(3) = 12$ [from (2)] (2 α) (2 β) (2 γ) = 8 ($\alpha \beta \gamma$) = 8(-4) = -32 [from (3)] . The required cubic equation is $x^{3} - (2\alpha + 2\beta + 2\gamma) x^{2} + (4\alpha\beta + 4\beta\gamma + 4\gamma\alpha)$ $x - (2\alpha) (2\beta) (2\gamma) = 0$ $x^3 - (-4)x^2 + 12x + 32 = 0$ $x^3 + 4x^2 + 12x + 32 = 0$ \Rightarrow (ii) Form the cubic equation whose roots are 1 1 1 $\overline{\alpha}^{,}\overline{\beta}^{,}\overline{\gamma}$

 $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta\gamma + \gamma\alpha + \alpha\beta}{\alpha\beta\gamma} = \frac{3}{-4} = \frac{-3}{4}$ $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} = \frac{\gamma + \alpha + \beta}{\alpha\beta\gamma} = \frac{-2}{-4} = \frac{1}{2}$ $\left(\frac{1}{\alpha}\right)\left(\frac{1}{\beta}\right)\left(\frac{1}{\gamma}\right) = \frac{1}{\alpha\beta\gamma} = \frac{1}{-4} = -\frac{1}{4}$... The required cubic equation is $x^{3} - \left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}\right)x^{2} + \left(\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}\right)x$ $-\left(\frac{1}{\alpha}\cdot\frac{1}{\beta}\cdot\frac{1}{\gamma}\right) = 0$ $\Rightarrow x^{3} + \frac{3}{4}x^{2} + \frac{1}{2}x + \frac{1}{4} = 0$ Multiplying by 4 we get, $4x^3 + 3x^2 + 2x + 1 = 0$ (iii) Form the equation whose roots are $\alpha - \beta - \gamma$ $\therefore -\alpha - \beta - \gamma = -(\alpha + \beta + \gamma)$ = -(-2) = 2 $\alpha\beta + \beta\gamma + \gamma\alpha = 3$ $(-\alpha)(-\beta)(-\gamma) = -(\alpha\beta\gamma) = -(-4) = 4$: The required cubic equation is $x^{3} - (-\alpha - \beta - \gamma)x^{2} + (\alpha\beta + \beta\gamma + \gamma\alpha)$ $x - \left[(-\alpha)(-\beta)(-\gamma) \right] = 0$ $x^{3} - (2)x^{2} + 3x - 4 = 0$ \Rightarrow $x^3 - 2x^2 + 3x - 4 = 0$ \Rightarrow Solve the equation $3x^3 - 16x^2 + 23x - 6 = 0$ if the product of two roots is 1. Sol. Given cubic equation is $3x^3 - 16x^2 + 23x - 6 = 0$ Let α , $\frac{1}{\alpha}$ and γ be the roots of the equation [:: product of two roots is 1] $x^{3} - \frac{16}{3}x^{2} + \frac{23}{3}x - 2 = 0$...(1) Comparing (1) with $x^{3} - \left(\frac{\alpha + 1 + \gamma}{\alpha}\right)x^{2} + \left(\alpha \frac{1}{\alpha} + \frac{1}{\alpha} \cdot \gamma + \gamma \alpha\right)^{x} - \alpha \frac{1}{\alpha} \cdot \gamma = 0$...(2) we get, $\alpha + \frac{1}{\alpha} + \gamma = \frac{16}{3}$...(3)

$$1 + \frac{\gamma}{\alpha} + \gamma \alpha = \frac{23}{3}$$
$$\alpha \cdot \frac{1}{\alpha} \cdot \gamma = 2 \Rightarrow \gamma = 2 \qquad \dots (4)$$

orders@surabooks.com

PH:9600175757 / 8124301000

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Substituting
$$\gamma = 2$$
 in (3)

$$a + \frac{1}{a} + 2 = \frac{16}{3}$$

$$\Rightarrow a + \frac{1}{a} = \frac{16}{3} - 2 = \frac{16 - 6}{3} = \frac{10}{3}$$

$$\Rightarrow a + \frac{1}{a} = \frac{10}{3} - 2 = \frac{16 - 6}{3} = \frac{10}{3}$$

$$\Rightarrow a + \frac{1}{a} = \frac{10}{3}$$

$$\Rightarrow a + \frac{1}{3}$$

$$a = -\frac{10}{3}$$
(a + 10) (3a - 1) = 0
$$\Rightarrow a + \frac{1}{3}$$

$$a = -\frac{10}{3}$$
 (ar) 10 (3a - 1) = 0
$$a = -\frac{10}{3}$$
 (ar) 10 (3a - 1) = 0

$$a = -\frac{10}{3}$$
 (ar) 10 satisfy (5);

$$\therefore$$
 The roots and $3, \frac{1}{3}$.

$$\Rightarrow a + \frac{1}{3}$$

$$a = -\frac{10}{3}$$
 (ar) 10 satisfy (5);

$$\therefore$$
 The roots and $3, \frac{1}{3}$.

$$\Rightarrow a + \frac{1}{3} + \frac{1}{2} + \frac{1}{2} = \frac{1}{3}$$

$$\Rightarrow a + \frac{1}{3} + \frac{1}{2} + \frac{1}{2} = \frac{1}{3}$$

$$\Rightarrow a + \frac{1}{3} + \frac{1}{2} + \frac{1}{2} = \frac{1}{3}$$

$$\Rightarrow a + \frac{1}{3} + \frac{1}{2} + \frac{1}{2} = \frac{1}{3}$$

$$\Rightarrow a + \frac{1}{3} + \frac{1}{2} + \frac{1}{2} = \frac{1}{3}$$

$$\Rightarrow a + \frac{1}{3} + \frac{1}{2} + \frac{1}{2} = \frac{1}{3}$$

$$\Rightarrow a + \frac{1}{3} + \frac{1}{2} = \frac{1}{2}$$

$$\Rightarrow a + \frac{1}{3} + \frac{1}{2} + \frac{1}{2} = \frac{1}{3}$$

$$\Rightarrow a + \frac{1}{3} + \frac{1}{2} = \frac{1}{2}$$

$$\Rightarrow a + \frac{1}{3} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$$

$$\Rightarrow a + \frac{1}{3} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

$$\Rightarrow a + \frac{1}{3} + \frac{1}{3} + \frac{1}{2} + \frac$$

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Chapter 3 - Theory of Equations

$$\therefore \alpha + \beta + \gamma = \frac{-b}{a}$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$$

$$\alpha\beta\gamma = \frac{-d}{a}$$
Now, $\sum \frac{\alpha}{\beta\gamma} = \frac{\alpha}{\beta\gamma} + \frac{\beta}{\gamma\alpha} + \frac{\gamma}{\alpha\beta}$

$$= \frac{\alpha^2 + \beta^2 + \gamma^2}{\alpha\beta\gamma}$$

$$= \frac{(\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)}{\alpha\beta\gamma}$$

$$= \frac{\left(\frac{-b}{a}\right)^2 - 2\left(\frac{c}{a}\right)}{-\frac{d}{a}}$$

$$= \frac{\frac{b^2}{a^2} - \frac{2c}{a}}{-\frac{d}{a}} \Rightarrow \frac{b^2 - 2ac}{a^2} \times \frac{-a}{d}$$

$$\therefore \sum_{\beta\gamma} \alpha = -\frac{(b^2 - 2ac)}{ad} = \frac{2ac - b^2}{ad}$$

8. If α , β , γ and δ are the roots of the polynomial equation $2x^4 + 5x^3 - 7x^2 + 8 = 0$, find a quadratic equation with integer coefficients whose roots are $\alpha + \beta + \gamma + \delta$ and $\alpha \beta \gamma \delta$

Sol. Given polynomial equation is [Sep - 2020] $2x^4 + 5x^3 - 7x^2 + 8 = 0$ Here a = 2, b = 5, c = -7, d = 0, e = 8By Vieta's formula.

$$\alpha + \beta + \gamma + \delta = \frac{-b}{a} = \frac{-5}{2}$$

$$\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta = \frac{c}{a} = \frac{-7}{2}$$

$$\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = \frac{-d}{a} = 0$$

$$\alpha\beta\gamma\delta = \frac{e}{a} = \frac{8}{2} = 4$$
Given roots of the quadratic equation are

 $\alpha + \beta + \gamma + \delta$ and $\alpha \beta \gamma \delta$

$$\therefore \text{ sum of the roots} = (\alpha + \beta + \gamma + \delta) (\alpha \beta \gamma \delta)$$

 $=\left(\frac{-5}{2}+4\right) = \frac{-5+8}{2} = \frac{3}{2}$

$$\therefore \text{ The required quadratic equation is } x^2 - x$$
(sum of the roots) + product of the roots = 0

$$\Rightarrow x^2 - x \left(\frac{3}{2}\right) - 10 = 0$$

$$\Rightarrow 2x^2 - 3x - 20 = 0$$
9. If *p* and *q* are the roots of the equation

$$lx^2 + nx + n = 0, \text{ show that } \sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}} = 0.$$
Sol. Given *p*, *q* are the roots of $lx^2 + nx + n = 0$

$$p + q = -\frac{n}{l} \text{ and } pq = \frac{n}{l}$$
Consider $\frac{(p+q)^2}{pq} = \frac{\left(\frac{-n}{l}\right)^2}{\left(\frac{n}{l}\right)} = \frac{n^2}{l^2} \times \frac{l}{n} = \frac{n}{l}$

Product of the roots = $(\alpha + \beta + \gamma + \delta)(\alpha\beta\gamma\delta)$

 $=\left(\frac{-5}{2}\right)(4)=\frac{-20}{2}=-10$

Taking square root on both sider

$$\sqrt{\frac{(p+q)^2}{pq}} = \sqrt{\frac{n}{l}}$$
$$\Rightarrow \pm \frac{(p+q)}{\sqrt{pq}} = \sqrt{\frac{n}{l}}$$
$$Consider - \frac{(p+q)}{\sqrt{pq}} = \sqrt{\frac{n}{l}}$$
$$\Rightarrow \frac{(p+q)}{\sqrt{pq}} = -\sqrt{\frac{n}{l}}$$
$$\frac{p}{\sqrt{pq}} + \frac{q}{\sqrt{pq}} = -\sqrt{\frac{n}{l}}$$
$$\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}} = 0$$

Hence proved.

10. If the equations $x^2 + px + q = 0$ and $x^2 + p'x + q' = 0$ have a common root, show that it must be equal to $\frac{pq' - p'q}{q - q'}$ or $\frac{q - q'}{p' - p}$. Sol. Given equation are $x^2 + px + q = 0$...(1) and $x^2 + p'x + q' = 0$...(2) Let α be the common root for (1) and (2) $\therefore \alpha^2 + p\alpha + q = 0$...(3) and $\alpha^2 + p'\alpha + q' = 0$...(4)

orders@surabooks.com

PH:9600175757 / 8124301000

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Solving (3) and (4) by cross multiplication
method we get

$$p \quad q \quad 1 \quad p' \quad \alpha^2 \quad \alpha \quad 1$$

 $\Rightarrow \quad \frac{\alpha^2}{pq' - p'q} = \frac{\alpha}{q - q'} = \frac{1}{p' - p}$
Consider $\frac{\alpha^2}{pq' - p'q} = \frac{\alpha}{q - q'} \Rightarrow \frac{\alpha^2}{\alpha} = \frac{pq' - p'q}{q - q'}$
 $\alpha = \frac{pq' - p'q}{q - q'}$
Consider $\frac{\alpha}{q - q'} = \frac{1}{p' - p} \Rightarrow \alpha = \frac{q - q'}{p' - p}$
Hence its roots are $\frac{pq' - p'q}{q - q'}$ or $\frac{q - q'}{p' - p}$

- 11. A 12 metre tall tree was broken into two parts. It was found that the height of the part which was left standing was the cube root of the length of the part that was cut away. Formulate this into a mathematical problem to find the height of the part which was left standing.
- Sol. Given that the height of the tree is 12m. Let x m be the standing part and (12 - x)m be the broken part.

 $x = \sqrt[3]{12 - x} \implies x = (12 - x)^{\frac{1}{3}}$

Taking power 3 both sides, we get $\Rightarrow x^3 = 12 - x$ $\Rightarrow x^3 + x - 12 = 0$ which is the required mathematical problem.

EXERCISE 3.2

- 1. If k is real, discuss the nature of the roots of the polynomial equation $2x^2 + kx + k = 0$, in terms of k.
- Sol. Given equation is $2x^2 + kx + k = 0$

Here
$$a = 2, b = k$$
,

$$\Delta = b^2 - 4ac = k^2 - 4 (2)(k)$$

= $k^2 - 8k = k (k - 8)$

0 8

Since k is real, the possible values of k are k < 0, k = 0 or 8, 0 < k < 8 or k > 8Case (i) When $k < 0, \Delta = k (k - 8) > 0$ \Rightarrow it has real roots ($\therefore k$ is real) Case (ii) When k = 0 or 8, $\Delta = 0$,

 \therefore The roots are real and equal

🎲 Sura's 👄 XII Std - Mathematics 👄 Volume I

Case (iii) When $0 \le k \le 8$, $\Delta = k (k - 8) \le 0$

It has imaginary roots

Case (iv) When k > 8, $\Delta = k (k - 8) > 0$

 \Rightarrow The roots are real and distinct

Find a polynomial equation of minimum degree with rational coefficients, having $2 + \sqrt{3}i$ as a root.

Sol. Given $2 + \sqrt{3}i$ is a root

 $\therefore 2 - \sqrt{3} i$ is another root

Hence sum of the roots $= 2 + \sqrt{3}i + 2 - \sqrt{3}i = 4$ Product of the roots $= (2 + \sqrt{3}i)(2 - \sqrt{3}i)$ = 4 + 3 = 7

Hence the required equatoin is

$$x^{2}$$
 – (sum of the roots) x + product of the roots = 0
 $x^{2} - 4x + 7 = 0$

Find a polynomial equation of minimum
degree with rational coefficients, having
2i + 3 as a root.[Hy - 2019]

Given 2i + 3 is a root

: Its conjugate 3 - 2i is also a root of the polynomial equation.

 \therefore Sum of the roots = 2i + 3 + 3 - 2i = 6

Product of the roots = (3 + 2i)(3 - 2i)

$$= 3^2 + 2^2 = 9 + 4 = 13$$

: The polynomial equation of minimum degree with rational co-efficients is

 $x^2 - x$ (sum of the roots) + product of the roots = 0

$$\Rightarrow x^2 - x(6) + 13 = 0$$

$$\Rightarrow x^2 - 6x + 13 = 0$$

Find a polynomial equation of minimum degree with rational coefficients, having $\sqrt{5} - \sqrt{3}$ as a root. [PTA - 5]

I. Given
$$(\sqrt{5} - \sqrt{3})$$
 is a root

 $\Rightarrow \sqrt{5} + \sqrt{3}$ is also a root.

: Sum of the roots = $\sqrt{5} - \sqrt{3} + \sqrt{5} + \sqrt{3} = 2\sqrt{5}$ Product of the roots

$$= (\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})$$

= $(\sqrt{5})^2 - (\sqrt{3})^2 = 5 - 3 = 2$

.:.One of the factor is $x^2 - x$ (sum of the roots) + product of the roots $\Rightarrow x^2 - 2x\sqrt{5} + 2$

The other factor also will be $x^2 + 2x\sqrt{5} + 2$.

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Chapter 3 - Theory of Equations

Hence, the polynomial equation of minimum degree with rational co-efficients is

$$\begin{array}{l} (x^2 - 2x\sqrt{5} + 2) \ (x^2 + 2x\sqrt{5} + 2) = 0 \\ \Rightarrow \ (x^2 + 2 - 2\sqrt{5}x)(x^2 + 2 + 2\sqrt{5}x) = 0 \\ \Rightarrow \ (x^2 + 2)^2 - (2\sqrt{5}x)^2 = 0 \\ \hline [\because (a + b) \ (a - b) = a^2 - b^2] \\ \Rightarrow \ x^4 + 4x^2 + 4 - 4(5)x^2 = 0 \\ \Rightarrow \ x^4 + 4x^2 + 4 - 20x^2 = 0 \\ \Rightarrow \ x^4 - 16x^2 + 4 = 0 \end{array}$$

- Prove that a straight line and parabola cannot intersect at more than two points.
- Sol. By choosing the co-ordinate axes suitably, we take the equation of the straight line as

y = mx + c...(1)and equation of parabola as $y^2 = 4ax$...(2) Substituting (1) in (2), we get $(mx+c)^2 = 4ax$ $m^2x^2 + c^2 + 2mcx = 4ax$ \Rightarrow $\Rightarrow m^2 x^2 + x(2mc - 4a) + c^2 = 0$

Which is a quadratic equation in x.

This equation cannot have more than two solution. Hence, a straight line and a parabola cannot intersect at more than two points.

- Solve the cubic equation : $2x^3 x^2 18x + 9 = 0$ if sum of two of its roots vanishes.
- Since sum of two of its roots vanishes, let the roots be α , $-\alpha$ and β

$$\alpha - \alpha + \beta = \frac{-b}{a} = \frac{1}{2} \Rightarrow \beta = \frac{1}{2}$$
Also, $\alpha \beta \gamma = \frac{-d}{a} \Rightarrow \alpha (-\alpha) (\frac{1}{2}) = \frac{-9}{2}$

$$\Rightarrow \qquad \frac{\alpha^2}{2} = \frac{9}{2} \Rightarrow \alpha^2 = 9 \Rightarrow \alpha = \pm 3$$

$$\Rightarrow \qquad \alpha = 3$$

 \therefore The roots are 3, -3 and $\frac{1}{2}$.

 \Rightarrow

Solve the equation $9x^3 - 36x^2 + 44x - 16 = 0$ if the roots form an arithmetic progression. Here, a = 9, b = -36, c = 44, d = -16Since the roots form an arithmetic progression, Let the roots be a - d, a and a + dSum of the roots $= \frac{-b}{a}$

$$\Rightarrow (a-d) + (a) + (a + d) = \frac{-(-36)}{9} = 4$$

$$\Rightarrow 3a = 4 \Rightarrow a = \frac{4}{3}$$

and product of the roots $= \frac{-d}{a}$

$$= \frac{-(-16)}{9} = \frac{16}{9}$$

$$\Rightarrow (a-d) (a) (a + d) = \frac{16}{9}$$

$$(a^2 - d^2) (a) = \frac{16}{9}$$

$$(\frac{16}{9} - d^2) \Big(\frac{4}{3}\Big) = \frac{16}{9} \quad [\because a = \frac{4}{3}]$$

$$= \frac{16}{9} - \frac{d^2}{2} = \frac{16}{9} \times \frac{3}{4} = \frac{4}{3}$$

$$= \frac{16}{9} - \frac{4}{3} = d^2$$

$$\Rightarrow d = \pm \sqrt{\frac{4}{9}} = \pm \frac{2}{3}$$

$$\therefore \text{The roots are } a - d, a, a + d$$

(i) When $a = \frac{4}{3}$, and $d = \frac{2}{3}$.
The roots $a - d, a, a + d$ becomes,

$$\frac{4}{3} - \frac{2}{3}, \frac{4}{3}, \frac{4}{3} + \frac{2}{3} \Rightarrow \frac{2}{3}, \frac{4}{3}, 2.$$

(ii) When $a = \frac{4}{3}$, and $d = -\frac{2}{3}$.
The roots $a - d, a, a + d$ becomes,

$$\frac{4}{3} + \frac{2}{3}, \frac{4}{3}, \frac{4}{3} - \frac{2}{3} \Rightarrow 2, \frac{4}{3}, \frac{2}{3}.$$

Solve the equation $3x^3 - 26x^2 + 52x - 24 = 0$ if its roots form a geometric progression.
Given cubic equation is $3x^3 - 26x^2 + 52x - 24 = 0$
Here, $a = 3, b = -26, c = 52, d = -24$.
Since the roots form a geometric progression,
The roots are $\frac{a}{r}$ $a, ar.$ sum of the roots $= \frac{-b}{a}$

 $\Rightarrow \frac{a}{r} + a + ar = \frac{20}{3}$ and product of the roots = $\frac{-d}{a}$ $\Rightarrow \frac{a}{r} \times a \times dr = \frac{24}{3} = \frac{a}{8}$ $a^3 = 8 = 2^3$...(1)a = 2

orders@surabooks.com

PH:9600175757 / 8124301000

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

$$\therefore (1) \text{ becomes } \frac{2}{r} + 2 + 2r = \frac{26}{3}$$

$$\Rightarrow \frac{2+2r+2r^2}{r} = \frac{26}{3} \Rightarrow \frac{1+r+r^2}{r} = \frac{13}{3}$$

$$\Rightarrow 3+3r+3r^2 = 13r \Rightarrow 3r^2 - 10r + 3 = 0$$

$$\Rightarrow (r-3)(3r-1) = 0 \Rightarrow r = 3$$

$$\therefore \text{The roots are } \frac{a}{r}, a, ar$$

$$\Rightarrow \frac{2}{3}, 2, 2(3) = \frac{2}{3}, 2, 6$$

4. Determine k and solve the equation $2x^3 - 6x^2 + 3x + k = 0$ if one of its roots is twice the sum of the other two roots.

Sol. Given cubic equation is $2x^3 - 6x^2 + 3x + k = 0$ Here, a = 2, b = -6, c = 3, d = kLet α, β, γ be the roots Given $\alpha = 2 (\beta + \gamma) \Rightarrow \frac{\alpha}{2} = \beta + \gamma$...(1) Now, $\alpha + \beta + \gamma = \frac{-b}{2} = -\frac{(-6)}{2} = 3$

$$\frac{\alpha}{2} + \alpha = 3 \Rightarrow \frac{\alpha + 2\alpha}{2} = 3 \Rightarrow \frac{3\alpha}{2} = 3$$
$$\Rightarrow \qquad \alpha = 2$$
$$\alpha \beta \gamma = \frac{-d}{a} = \frac{-k}{2} \Rightarrow 2.\beta \gamma = \frac{-k}{2}$$
$$\beta \gamma = \frac{-k}{4} \qquad \dots (2)$$

Also,
$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$$

 $2\beta + \beta\gamma + 2\gamma = \frac{3}{2}$
 $2(\beta + \gamma) + \beta\gamma = \frac{3}{2}$
 $\alpha - \frac{k}{4} = \frac{3}{2}$ [From (1) & (2)]
 $2 - \frac{k}{4} = \frac{3}{2}$ [$\because \alpha = 2$]
 $2 - \frac{3}{2} = \frac{k}{4} \Rightarrow \frac{1}{2} = \frac{k}{4}$
 $k = \frac{4}{2} \Rightarrow k = 2$
From (2), $\beta\gamma = \frac{-k}{4} = \frac{-2}{4} = \frac{-1}{2} \Rightarrow \gamma = \frac{-1}{2\beta}$
From (1), $\beta + \gamma = \frac{\alpha}{2} = \frac{2}{2} = 1$
Substituting $\gamma = \frac{-1}{2}$ we get

🎲 Sura's 🛶 XII Std - Mathematics 🛶 Volume I

$$\beta - \frac{1}{2\beta} = 1 \Rightarrow 2\beta^2 - 1 = 2\beta \Rightarrow 2\beta^2 - 2\beta - 1 = 0$$

$$\beta = \frac{2 \pm \sqrt{4 - 4(2)(-1)}}{4} = \frac{2 \pm \sqrt{4 + 8}}{4}$$

$$= \frac{2 \pm \sqrt{12}}{4} = \frac{2 \pm 2\sqrt{3}}{4}$$

$$\beta = \frac{1 \pm \sqrt{3}}{2}$$

 $k = 2$ and the roots are 2, $\frac{(1 \pm \sqrt{3})}{2}$

Find all zeros of the polynomial $x^6 - 3x^5 - 5x^4$ $+ 22x^3 - 39x^2 - 39x + 135$, if it is known that 1 + 2*i* and $\sqrt{3}$ are two of its zeros. Let $f(x) = x^6 - 3x^5 - 5x^4 + 22x^3 - 39x^2 - 39x + 135$ Given (1 + 2i) is a root $\Rightarrow (1 - 2i)$ is also a root. Also $\sqrt{3}$ is a root $\Rightarrow -\sqrt{3}$ is also a root. Hence, the factors of f(x) are [x - (1 + 2i)] $[x - (1 - 2i)] [x - \sqrt{3}] [x + \sqrt{3}]$ $[(x-1)-2i][(x-1)+2i][x-\sqrt{3}][x+\sqrt{3}]$ $((x-1)^2+2^2)(x^2-3)$ $= (x^2 - 2x + 1 + 4)(x^2 - 3)$ \Rightarrow factor of f(x) is $(x^2 - 2x + 5)(x^2 - 3)$ $\Rightarrow x^4 - 3x^2 - 2x^3 + 6x + 5x^2 - 15$ \Rightarrow ($x^4 - 2x^3 + 2x^2 + 6x - 15$) is a factor of f(x)To find the other factor, let us divide f(x) by $x^4 - 2x^3 + 2x^2 + 6x - 15$ *x*⁴

$$\begin{array}{c}
x^{2} - x - 9 \\
x^{2} - x^{2} - 9 \\
x^{2} - 2x^{3} + 2x^{2} + 6x - 15 \\
x^{4} - 3x^{5} - 5x^{4} + 22x^{3} - 39x^{2} - 39x + 135 \\
x^{6} - 2x^{5} + 2x^{4} + 6x^{3} - 15x^{2} \\
- x^{5} - 2x^{5} + 2x^{4} + 16x^{3} - 24x^{2} - 39x \\
(+) & (-) & (+) & (+) & (-) \\
- x^{5} + 2x^{4} - 2x^{3} - 6x^{2} + 15x \\
- 9x^{4} + 18x^{3} - 18x^{2} - 54x + 135 \\
- 9x^{4} + 18x^{3} - 18x^{2} - 54x + 135 \\
0
\end{array}$$

The other factor is
$$x^2 - x - 9$$

$$\Rightarrow x = \frac{1 \pm \sqrt{(-1)^2 - 4(1)(-9)}}{2}$$
[:: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$]

orders@surabooks.com

2β

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Chapter 3
Theory of Equations

$$\Rightarrow x = \frac{1 \pm \sqrt{37}}{2}$$

Hence the roots are

1 + 2*i*, 1-2*i*, $\sqrt{3}$, $-\sqrt{3}$, $\frac{1+\sqrt{37}}{2}$, $\frac{1-\sqrt{37}}{2}$ Solve the cubic equations :

- (i) $2x^3 9x^2 + 10x = 3$,
- (ii) $8x^3 2x^2 7x + 3 = 0$.
- Sol. (i) Since the sum of the co-efficients is 2-9+10-3 = 12-12=0 $\Rightarrow x = 1$ is a root of f(x)
 - \therefore (x 1) is a factor of f(x)

To find the other factor, let us divide f(x) by x - 1

1	2	-9	10	-3
	₩	2	-7	3
3	2	-7	3	0
	♥	6	-3	
	2	-1	0	

[Using synthetic division]

f(x) = (x-1)(x-3)(2x-1) = 0x - 1 = 0, x - 3 = 0 or 2x - 1 = 0 \Rightarrow $x = 1, x = 3, x = \frac{1}{2}$ \Rightarrow Hence the roots are 1, 3, $\frac{1}{2}$. Let $f(x) = 8x^3 - 2x^2 - 7x + 3 = 0$ (ii) Here sum of the co-efficients of odd terms = 8 - 7 = 1and sum of the co-efficients of even terms = -2 + 3 = 1Hence, x = -1 is a root of f(x)Let us divide f(x) by (x + 1) \therefore The other factor is $8x^2 - 10x + 3$ $x = \frac{10 \pm \sqrt{100 - 4(8)(3)}}{2 \times 8}$ $x = \frac{10 \pm \sqrt{100 - 96}}{16} \Rightarrow x = \frac{10 \pm 2}{16}$ $x = \frac{12}{16}$ or $x = \frac{8}{16} \Rightarrow x = \frac{3}{4}, \frac{1}{2}$. \therefore The roots are $-1, \frac{1}{2}, \frac{3}{4}$

7. Solve the equation : $x^4 - 14x^2 + 45 = 0$. Sol. Put $x^2 = y$ $\Rightarrow y^2 - 14y + 45 = 0$ 45 $\Rightarrow (y - 9) (y - 5) = 0$ -14 $\Rightarrow y = 9 \text{ or } y = 5$ -14 $\Rightarrow x^2 = 9 \text{ or } x^2 = 5$ -9 $\Rightarrow x = \pm 3 \text{ or } x = \pm \sqrt{5}$ Hence the roots are $\pm 3, \pm \sqrt{5}$.

EXERCISE 3.4

Solve : (i) (x - 5)(x - 7)(x + 6)(x + 4) = 504Sol. Rearrange the terms as. (x-5)(x+4)(x-7)(x+6) = 504 $\Rightarrow (x^2 - x - 20) (x^2 - x - 42) = 504$ 336 put $x^2 - x = y$ (y-20)(y-42) = 504 \Rightarrow -62 $\Rightarrow y^2 - 62y + 840 - 504 = 0$ 56 $y^2 - 62y + 336 = 0$ \Rightarrow (y-56)(y-6) = 0 \Rightarrow -56 y = 56, 6 \Rightarrow **Case (i)** When y = 56, $x^2 - x = 56$ _1 $x^2 - x - 56 = 0$ \Rightarrow 7 (x-8)(x+7) = 0 \Rightarrow \Rightarrow x = 8, -7Case (ii) 6 When y = 6, $x^2 - x = 6$ -1 $x^2 - x - 6 = 0$ \Rightarrow 2 (x-3)(x+2) = 0 \Rightarrow x = 3, -2 \Rightarrow Hence the roots are $\{8, -7, -3, -2\}$. (ii) (x-4)(x-7)(x-2)(x+1) = 16Sol. Given (x-4)(x-7)(x-2)(x+1) = 16Re arrange the terms as (x-4)(x-2)(x-7)(x+1) = 16 $(x^2 - 6x + 8) (x^2 - 6x - 7) = 16$ \Rightarrow put $x^2 - 6x = y$ -72 (y+8)(y-7) = 16 \Rightarrow $y^2 + y - 56 - 16 = 0$ \Rightarrow $y^2 + y - 72 = 0$ \Rightarrow (y+9)(y-8) = 0 \Rightarrow y = -9, 8 \Rightarrow Case (i) y = -9When $x^2 - 6x = -9$ $x^2 - 6x + 9 = 0$ \Rightarrow $(x-3)^2 = 0$ \Rightarrow \Rightarrow x = 3.3

orders@surabooks.com

PH:9600175757 / 8124301000

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Case (ii) -72 When y = 8,-1 $x^2 - 6x = 8$ $x^2 - 6x - 8 = 0$ \Rightarrow $x = \frac{6 \pm \sqrt{36 - 4(1)(-8)}}{2}$ \Rightarrow $x = \frac{6 \pm \sqrt{36 + 32}}{2}$ \Rightarrow $x = \frac{6 \pm \sqrt{68}}{2} \Longrightarrow x = \frac{6 \pm 2\sqrt{17}}{2}$ \Rightarrow $x = \frac{2\left(3\pm\sqrt{17}\right)}{2}$ \rightarrow $x = 3 \pm \sqrt{17}$ \Rightarrow \therefore The roots are 3, 3, 3 + $\sqrt{17}$ and 3 - $\sqrt{17}$ Solve : (2x - 1)(x + 3)(x - 2)(2x + 3) + 20 = 0Sol. Rearrange the terms as (2x-1)(2x+3)(x+3)(x-2)+20=0 $\Rightarrow (4x^2 + 6x - 2x - 3)(x^2 - 2x + 3x - 6) + 20 = 0$ $\Rightarrow (4x^2 + 4x - 3)(x^2 + x - 6) + 20 = 0$ $x^2 + x = y$ put 152 $\Rightarrow (4y-3)(y-6) + 20 = 0$ -27 $\Rightarrow 4y^2 - 24y - 3y + 18 + 20 = 0$ -19 $\Rightarrow 4y^2 - 27y + 38 = 0$ $\Rightarrow (y-2)(4y-19) = 0$ $y = 2, \frac{19}{4}$ 4 \Rightarrow Case (i) When y = 2, $x^{2} + x = 2 \Rightarrow x^{2} + x - 2 = 0$ $\Rightarrow (x+2)(x-1) = 0$ x = -2.1 \Rightarrow Case (ii) $y = \frac{19}{4}, x^2 + x = \frac{19}{4}$ When $4x^2 + 4x = 19$ \Rightarrow $\Rightarrow 4x^2 + 4x - 19 = 0$ $x = \frac{-4 \pm \sqrt{16 - 4(4)(-19)}}{\frac{8}{x}}$ $x = \frac{-4 \pm \sqrt{16 + 304}}{8}$ \Rightarrow \Rightarrow $x = \frac{-4 \pm \sqrt{320}}{\circ}$ \Rightarrow

🎲 Sura's 🔿 XII Std - Mathematics 🛶 Volume I

$$\Rightarrow \qquad x = \frac{-4 \pm 8\sqrt{5}}{8}$$
$$\Rightarrow \qquad x = \frac{4(-1 \pm 2\sqrt{5})}{8}$$
$$\Rightarrow \qquad x = \frac{-1 \pm 2\sqrt{5}}{2}$$
$$\therefore \text{ The roots are } \left\{1, -2, \frac{-1 + 2\sqrt{5}}{2}, \frac{-1 - 2\sqrt{5}}{2}\right\}$$

EXERCISE 3.5

Solve the following equations $\sin^2 x - 5\sin x + 4 = 0$ (i) (ii) $12x^3 + 8x = 29x^2 - 4$ (i) $\sin^2 x - 5 \sin x + 4 = 0$ Put $y = \sin x$ $y^2 - 5y + 4 = 0$ \Rightarrow (y-4)(y-1) = 0 \Rightarrow v = 4.1 \Rightarrow Case (i) When $y = 4, \sin x = 4$ and no solution for $\sin x = 4$ since the range the sine function is [-1, 1]Case (ii) When $y = 1, \sin x = 1$ $\sin x = \sin \frac{\pi}{2} \qquad [\because \sin \frac{\pi}{2} = 1]$ \Rightarrow $x = n\pi + (-1)^n \frac{\pi}{2}, n \in \mathbb{Z}$ \Rightarrow $[:: \sin x = \sin \alpha \Rightarrow x = n\pi + (-1)^n \alpha, n \in \mathbb{Z}]$ for all $n \in \mathbb{Z}$, $x = 2n + \pi \frac{n}{2}$ is solution $12x^3 + 8x = 29x^2 - 4$ (ii) This equation can be re-written as $12x^3 - 29x^2 + 8x + 4 = 0$ $\therefore x = 2$ is a root and the remaining factor is $12x^2 - 5x - 2$ (3x-2)(4x+1) = 03x - 2 = 0 or 4x + 1 = 0 $\Rightarrow x = \frac{2}{3}, x = \frac{-1}{4}$ $\frac{-8}{12}$ $\frac{3}{12}$ \therefore The roots are 2, $\frac{2}{3}$ and $-\frac{1}{4}$.

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Chapter 3 - Theory of Equations

Case (i) when t = 8, $\Rightarrow y^3 = 8 \Rightarrow y^3 = 2^3$ \Rightarrow **Case (ii)** when $t = \frac{1}{8}$, $y^3 = \frac{1}{8}$ $y = \frac{1}{2}$ When $y = 2, x^{\frac{1}{2n}} = 2$ \Rightarrow $x = (2)^{2n}$ \Rightarrow $x = (2^2)^n$ \Rightarrow $x = 4^n$ \Rightarrow When $y = \frac{1}{2}, x^{\frac{1}{2n}} = \frac{1}{2} \Rightarrow x = \left(\frac{1}{2}\right)^{2n}$ $x = \left(\frac{1}{2^2}\right)^n = \frac{1}{4^n}$ Hence the roots are 4^n Solve: $2\sqrt{\frac{x}{a}} + 3\sqrt{\frac{a}{x}} = \frac{b}{a} + \frac{6a}{b}$. Put $\sqrt{\frac{x}{a}} = y \implies 2y + \frac{3}{y} = \frac{b}{a} + \frac{6a}{b}$ $\frac{2y^2+3}{y} = \frac{b^2+6a^2}{ab}$ $ab(2y^2+3) = (b^2+6a^2)y$ \Rightarrow $\Rightarrow 2ab y^2 + 3ab - y(b^2 + 6a^2) = 0$ $\Rightarrow 2aby^2 - y(b^2 + 6a^2) + 3ab = 0$ $\Rightarrow 2ab y^2 - b^2 y - 6a^2 y + 3ab = 0$ $\Rightarrow by(2ay - b) - 3a(2ay - b) = 0$ (2ay - b)(by - 3a) = 0 \Rightarrow 2ay = b, by = 3a \Rightarrow $y = \frac{b}{2a}, y = \frac{3a}{b}$ \Rightarrow Case (i) When $y = \frac{b}{2a}$ $\Rightarrow \sqrt{\frac{x}{a}} = \frac{b}{2a} \Rightarrow \frac{x}{a} = \frac{b^2}{4a^2} \Rightarrow x = \frac{b^2}{4a}$ Case (ii) When $y = \frac{3a}{r}$ $\sqrt{\frac{x}{a}} = \frac{3a}{b} \Rightarrow \frac{x}{a} = \frac{9a^2}{b^2} \Rightarrow x = \frac{9a^3}{b^2}$ \therefore The roots are $\frac{b^2}{4a}$, $\frac{9a^3}{b^2}$

orders@surabooks.com

PH:9600175757 / 8124301000

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

CHAPTER 5

TWO DIMENSIONAL ANALYTICAL GEOMETRY - II

MUST KNOW DEFINITIONS

orders@surabooks.com

PH:9600175757 / 8124301000

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

www.kalvinesan.com

orders@surabooks.com

PH:9600175757 / 8124301000

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

		🖞 Sura's 🚥	XII Std - Mather	natics 🛶 Volum
Equation & Diagram	Ellipse Centre	Major axis	Vertices	Foci
$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1, \ a^2 > b^2$	(<i>h</i> , <i>k</i>)	parallel to the <i>x</i> -axis	(<i>h</i> + <i>a</i> , <i>k</i>)	(h+c, k)
$(y-k)^2 = -4a(x-h)$ Y O • X	(h, k)	parallel to the y-axis	(<i>h</i> , <i>k</i> + <i>a</i>)	(<i>h</i> , <i>k</i> + <i>c</i>)

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Chapter 5 - Two Dimensional Analytical Geometry - II

Parabola

- Equation of tangent is $yy_1 = 2a(x + x_1)$ (cartesian form) and in parametric form is $yt = x + at^2$.
- Equation of normal is $xy_1 + 2ay = x_1y_1 + 2ay_1$ in parametric form is $y + xt = at^3 + 2at$.

Ellipse

Equation of tangent is
$$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$$
 (cartesian form)
 $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$ (Parametric form)

Equation of normal is
$$\frac{a^2x}{x_1} - \frac{b^2y}{y_1} = a^2 - b^2$$
 (cartesian form)
 $\frac{ax}{\cos\theta} - \frac{by}{\sin\theta} = a^2 - b^2$ (parametric form)

Hyperbola

Equation of tangent is $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$ (cartesian form) $\frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1$ (parametric form) Equation of normal is $\frac{a^2x}{x_1} + \frac{b^2y}{y_1} = a^2 + b^2$ (cartesian form) $\frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2$ (parametric form) Condition for y = mx + c to be a tangent to (i) Parabola $y^2 = 4 ax$ is $c = \frac{a}{m}$; Point of contact is $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$ (ii) Ellipse is $c^2 = a^2m^2 - b^2$; Point of contact is $\left(\frac{-a^2m}{c}, \frac{b^2}{c}\right)$ (iii) Hyperbola is $c^2 = a^2m^2 - b^2$; Point of contact is $\left(\frac{-a^2m}{c}, \frac{-b^2}{c}\right)$

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

- 1. Obtain the equation of the circles with radius 5 cm and touching *x*-axis at the origin in general form.
- Sol. Given r = 5 cm

Since the circle touches the *x* axis, its centre is $(0, \pm 5)$

Equation of the circle is $(x - h)^2 + (y - k)^2 = r^2$

 $\Rightarrow (x-0)^2 + (y \pm 5)^2 = 5^2$ $\Rightarrow x^2 + y^2 + 25 \pm 10y = 25$ $\Rightarrow x^2 + y^2 \pm 10y = 0$

Y

2. Find the equation of the circle with centre (2, -1) and passing through the point (3, 6) in standard form.

Sol.

Given centre is (2, -1) and passing through the point (3, 6)

 \therefore r = distance between (2, -1) and (3, 6)

$$= \sqrt{(2-3)^2 + (-1-6)^2}$$

= $\sqrt{(-1)^2 + (-7)^2}$
= $\sqrt{1+49} = \sqrt{50}$

 \therefore Equation of the circle is

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$

$$(x-2)^{2} + (y+1)^{2} = (\sqrt{50})^{2}$$

$$\Rightarrow (x-2)^{2} + (y+1)^{2} = 50$$

🎁 Sura's 🔿 XII Std - Mathematics 🛶 Volume I

Find the equation of circles that touch both the axes and pass through (-4, -2) in general form.

b). Since the circle touch both the axis. Its equation will be $(x - a)^2 + (y - a)^2 = a^2$... (1) It passes through (-4, -2)

it passes through
$$(-4, -2)$$

: $(-4 - a)^2 + (-2 - a)^2 - a^2$

Y

$$\frac{16}{2} + a^{2} + 8a + 4 + a^{2} + 4a = a^{2}$$

$$a^{2} + 12a + 20 = 0$$

(a+10)(a+2) = 0

a = -10 or -2

Case (i)

 \Rightarrow

 \Rightarrow

When
$$a = -10$$
, (1) becomes
 $(x + 10)^2 + (y + 10)^2 = -10^2$
 $\Rightarrow x^2 + 100 + 20x + y^2 + 100 + 20y = 100$
 $\Rightarrow x^2 + y^2 + 20x + 20y + 100 = 0$

Case (ii)

When a = -2, (1) becomes

$$(x + 2)^{2} + (y + 2)^{2} = -2^{2}$$

$$\Rightarrow \qquad x^{2} + 4x + 4 + y^{2} + 4y + 4 = 4$$

$$\Rightarrow \qquad x^{2} + y^{2} + 4x + 4y + 4 = 0$$

Hence, equation of the circles are

$$x^{2} + y^{2} + 4x + 4y + 4 = 0$$

or

$$x^{2} + y^{2} + 20x + 20y + 100 = 0$$

Find the equation of the circle with centre (2, 3) and passing through the intersection of the lines 3x - 2y - 1 = 0 and 4x + y - 27 = 0.

Sol. Given centre is (2, 3) Let us solve 3x - 2y = 1 ...(1) and 4x + y = 27 ...(2) (1) \rightarrow 3x - 2y = 1(2) $\times 2 \rightarrow$ 8x + 2y = 54 $11x = 55 \Rightarrow x = 5$

Substituting x = 5 in equation (1)

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Cha	oter 5 – Two Dimensional Analytical Geometry - II	
	$\therefore 3(5) - 2y = 1$	
	\Rightarrow $15-2y = 1$	
	\Rightarrow $15-1 = 2y$	
	\Rightarrow 14 = 2v	
	\Rightarrow $y = 7$	
	The circle passes through $(5, 7)$	
	[:: distance between $(5, 7)$ and $(2, 3)$]	
	$r = \sqrt{(5-2)^2 + (7-3)^2}$	7
	$=\sqrt{3^2+4^2}$	
	$=\sqrt{9+16} = \sqrt{25} = 5$	
	Equation of the circle is	
	$(x-h)^2 + (y-k)^2 = r^2$	
	$\Rightarrow \qquad (x - 2)^2 + (y - 3)^2 = 5^2$	
	$\Rightarrow \qquad (x-2) + (y-3) = 3$ $\Rightarrow \qquad x^2 - 4x + 4 + y^2 - 6y + 9 = 25$	
	$\Rightarrow x^{2} + y^{2} + y^$	
	$\Rightarrow x + y - 4x - 6y + 13 - 23 = 0$	
	$\Rightarrow \qquad x + y - 4x - 0y - 12 = 0$	
5 .	Obtain the equation of the circle for which	
	(3, 4) and $(2, -7)$ are the ends of a diameter.	
	Given ends of diameter are $(3, 4), (2, -7)$ [PTA -3]	
	\therefore Equation of the circle is	
	$(x - x_1) (x - x_2) + (y - y_1) (y - y_2) = 0$	
	$\Rightarrow \qquad (x-3)(x-2) + (y-4)(y+7) = 0$	
	$\Rightarrow x^2 - 2x - 3x + 6 + y^2 + 7y - 4y - 28 = 0$	
	$\Rightarrow \qquad x^2 + y^2 - 5x + 3y - 22 = 0$	
6.	Find the equation of the circle through the	
	points (1, 0), (-1, 0) and (0, 1).	
	Let the equation of the circle be	
	$x^{2} + y^{2} + 2gx + 2fy + c = 0 \dots (1)$	
	It passes through (1, 0)	8.
	$\Rightarrow \qquad 1^2 + 0 + 2g(1) + 2f(0) + c = 0$	0.1
	$\Rightarrow \qquad 2g + c = -1 \dots (2)$	<u> </u>
	It passes through (-1, 0)	
	$\Rightarrow (-1)^2 + 0 + 2g(-1) + 2f(0) + c = 0$	
	$\Rightarrow \qquad -2g+c = -1 \dots (3)$	
	Also it passes through $(0, 1)$	
	\Rightarrow 0 + 1 ² + 2g(0) + 2f(1) + c = 0	
	$\Rightarrow \qquad 2f+c = -1 \dots (4)$	
	$(2) + (3) \Longrightarrow \qquad \qquad 2c = -2$	
	\Rightarrow $c = -1$	
	Substituting $c = -1$ in (2), we get	
	2p - 1 = -1	
	$\Rightarrow \qquad 2g = 0$	
	-0 -	

g = 0 \Rightarrow Substituting c = -1 in (4) we get, 2f - 1 = -12f =0 \Rightarrow 0 \Rightarrow f = \therefore (1) becomes, $x^2 + y^2 + 0 + 0 - 1 =$ 0 $x^2 + y^2 =$ 1 \Rightarrow A circle of area 9π square units has two of its diameters along the lines x + y = 5 and x - y = 1. Find the equation of the circle. Area of the circle = 9π sq. units [Sep. - 2020] $\pi r^2 = 9\pi \Rightarrow r^2 = 9 \Rightarrow r = 3$ Diameters are x + y = 5 (1) and x - y = 1 (2) We know that centre is the point of intersection of diameters. \therefore To find the centre, solve (1) and (2). $\begin{array}{rcl} x + \psi &=& 5\\ x - \psi &=& 1\\ \hline 2x &=& 6 \end{array}$ $(1) + (2) \Rightarrow$ \Rightarrow x = 3Substituting x = 3 in x + y = 5 \therefore (1) \Rightarrow 3 + y = 5v = 5 - 3 = 2 \Rightarrow \therefore Centre is (3, 2)Hence, equation of the circle is $(x-h)^2 + (y-k)^2 = r^2$ $(x-3)^2 + (y-2)^2 = 3^2$ \Rightarrow $x^2 - 6x + 9 + y^2 - 4y + 4 = 9$ \Rightarrow $x^2 + y^2 - 6x - 4y + 4 = 0$ \Rightarrow If $y = 2\sqrt{2x+c}$ is a tangent to the circle $x^2 + y^2 = 16$, find the value of c. Given that equation of the circle is $x^2 + y^2 = 16$ $a^2 = 16$ \Rightarrow and equation of the tangent is $y = 2\sqrt{2x} + c$ \Rightarrow m = 2 $\sqrt{2}$ and c = c [: y = mx + c is the tangent] The condition for the line y = mx + c is a tangent to the circle $x^2 + y^2 = a^2$ is $c^2 = a^2 (1 + m^2)$ $c^2 = 16(1 + (2\sqrt{2})^2)$ \Rightarrow $c^2 = 16(1+8)$ \Rightarrow $c^2 = 16(9)$ \Rightarrow

orders@surabooks.com

PH:9600175757 / 8124301000

С

 $c = \pm 4(3)$

 $= \pm 12$

Please Send your Materials, Question Papers & Answer Keys to Email : kalvinesan.com@gmail.com

 \Rightarrow \Rightarrow

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

9. Find the equation of the tangent and normal to the circle
$$x^2 + y^2 - 6x + 6y - 8 = 0$$
 at (2, 2).
Sol. Equation of the circle is $x^2 + y^2 - 6x + 6y - 8 = 0$.
 \therefore Equation of the tangent at (x_1, y_1) is
 $xx_1 + yy_1 - \frac{6}{2}(x + x_1) + \frac{6}{2}(y + y_1) - 8 = 0$
Given (x_1, y_1) is (2, 2)
Equation of the tangent at (2, 2) is
 $x(2) + y(2) - 3(x + 2) + 3(y + 2) - 8 = 0$
 $\Rightarrow 2x + 2y - 3x - 6 + 3y + 6 - 8 = 0$
 $\Rightarrow x - 5y + 8 = 0$ (ii)
Equation of the normal is
 $yx_1 - xy_1 + g(y - y_1) - f(x - x_1) = 0$
 $\Rightarrow y(2) - x(2) - 3(y - 2) - 3(x - 2) = 0$
[:: $2g = -6 \Rightarrow g = -3; 2f = 6 \Rightarrow f = 3]$
 $\Rightarrow 2y - 2x - 3y + 6 - 3x + 6 = 0$
 $\Rightarrow -5x - y + 12 = 0$
10. Determine whether the points (-2, 1), (0, 0)
and (-4, -3) lie outside, on or inside the circle
 $x^2 + y^2 - 5x + 2y - 5 = 0$.
Sol. (i) Given equation of the circle is
 $x^2 + y^2 - 5x + 2y - 5 = 0$.
Sol. (ii) Given equation of the circle is
 $x^2 + y^2 - 5x + 2y - 5 = 0$.
Sol. (ii) Given equation of the circle is
 $x^2 + y^2 - 5x + 2y - 5 = 0$.
Sol. (ii) Given equation of the circle is
 $(-2)^2 + 1^2 - 5(-2) + 2(1) - 5$
 $= 4 + 1 + 10 + 2 - 5$
 $= 17 - 5 = 12 > 0$.
 \therefore (-2, 1) lies outside the circle.
(iii) At (0, 0), (1) becomes
 $(-4)^2 + (-3)^2 - 5(-4) + 2(-3) - 5$
 $= 45 - 11 = 34 > 0$
 \therefore (-4, -3) lies outside the circle.
(i) $x^2 + y^2 + 6x - 4y + 4 = 0$
(ii) $x^2 + y^2 - x + 2y - 3 = 0$
(iv) $2x^2 + 2y^2 - 6x + 4y + 2 = 0$ [PTA-6]

🖞 Sura's 🔿 XII Std - Mathematics 🔿 Volume I

(i)	Equation of the circle is $x^2 + (y+2)^2 = 0$
	Centre is $(0, -2)$ and radius is 0.
(ii)	Equation of the circle is
	$x^2 + y^2 + 6x - 4y + 4 = 0.$
	Here $2g = 6 \implies g = 3$
	$2f = -4 \Rightarrow f = -2 \text{ and } c = 4$
	Centre is $(-g, -f) \Rightarrow (-3, 2)$
	$r = \sqrt{g^2 + f^2 - c} = \sqrt{3^2 + (-2)^2 - 4}$
	$= \sqrt{9+4-4} = \sqrt{9}$
	= 3 units
(iii)	Equation of the circle is $x^2 + y^2 - x + 2y - 3 = 0$
	Here $2g = -1 \Rightarrow g = \frac{-1}{2}$
	$2f = 2 \Rightarrow f = 1 \text{ and } c = -3$
	Controling $(a, b) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
	(-g, -j) = (-2, -1)
	and $r = \sqrt{g^2 + f^2 - c}$
	$= \sqrt{\frac{1}{4} + 1 + 3}$
	$= \sqrt{\frac{1}{4} + 4} = \sqrt{\frac{1 + 16}{4}}$
	$\sqrt{17}$
	$r = \frac{1}{2}$ units.
Equation $2x^2 + 2x^2 $	tion of the circle is $2y^2 - 6x + 4y + 2 = 0$
Divi	ding by 2, we get
x^2	$+y^2 - 3x + 2y + 1 = 0$
	Here $2g = -3 \Rightarrow g = \frac{-3}{2}$
	$2f = 2 \implies f = 1$
	and $c = 1$
	Centre is $(-g, -f) = \left(\frac{3}{2}, -1\right)$
and	$r = \sqrt{g^2 + f^2 - c} = \sqrt{\left(\frac{3}{2}\right)^2 + 1^2 - 1}$
	$= \sqrt{\frac{9}{4}} = \frac{3}{2}$ units.

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

X

(2, -3)

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Chapter 5 - Two Dimensional Analytical Geometry - II

12. If the equation $3x^2 + (3 - p)xy + qy^2 - 2px$ = 8pq represents a circle, find p and q. Also determine the centre and radius of the circle. Sol. Given equation of the circle is [PTA - 1] $3x^{2} + (3-p)xy + qy^{2} - 2px = 8pq$ For the circle, co-efficient of xy = 0 \Rightarrow $3-p = 0 \Rightarrow p = 3$ Also, co-efficient of x^2 = co-efficient of y^2 \Rightarrow 3 = q: Equation of the circle is $3x^2 + 3y^2 - 6x = 8(3)(3)$ $3x^2 + 3y^2 - 6x - 72 = 0$ Dividing by 3, we get $x^2 + y^2 - 2x - 24 = 0$ Here 2g = -2g = -1 \Rightarrow f = 0 and c = -24Centre is (-g, -f) = (1, 0)and $r = \sqrt{g^2 + f^2} - c$ $=\sqrt{(-1)^2+0+24}$ $=\sqrt{25}$ = 5 units.

- Find the equation of the parabola in each of the cases given below :
 - **(i)** focus (4, 0) and directrix x = -4.

[Aug. - 2021]

- **(ii)** passes through (2, -3) and symmetric about y- axis.
- (iii) vertex(1, -2) and focus(4, -2).
- (iv) end points of latus rectum (4, -8) and (4, 8).

(4, 0)

Sol. (i) Given Focus (4, 0) and directrix x = -4. Since (4, 0) is the focus and the directrix is x = -4, the parabola is of the form $y^2 = 4ax.$ x = -4 Y

Also
$$a = 4$$

 \therefore Equation of the parabola is $y^2 = 4(4)x$
 $\Rightarrow y^2 = 16x$

(ii) The parabola passes through (2, -3) and symmetric about y-axis.

> Since the parabola passes through (2, -3)the parabola is open downward.

Y'

$$\therefore$$
 Its equation is $x^2 = -4ay$...(1)

3

Substitute the point (2, -3) we get,

$$2^{2} = -4a(-3)$$

4 = 12a
a = $\frac{4}{2} = \frac{1}{2}$

(1) becomes.

 \Rightarrow

$$\therefore x^2 = -4\left(\frac{1}{3}\right)y$$
$$3x^2 = -4y$$

(iii) Vertex is (1, -2) and focus is (4, -2). The parabola is right open.

a = distance between (1, -2) and (4, -2)

$$\Rightarrow \qquad a = \sqrt{(1-4)^2 + (-2+2)^2}$$
$$a = \sqrt{(-3)^2} = 3$$

Equation of the parabola is

$$(y-k)^2 = 4a (x-h)$$

$$(y+2)^2 = 4(3) (x-1)$$

[:: (h, k) is (1, -2)]

$$\Rightarrow (y+2)^2 = 12 (x-1)$$

(iv) End points of latus rectum are (4, -8) and
(4, 8).

Focus is the mid-point of (4, -8) and (4, 8)

orders@surabooks.com

PH:9600175757 / 8124301000

Please Send your Materials, Question Papers & Answer Keys to Email : kalvinesan.com@gmail.com

=

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Y (4, 8)
(4,
$$-8$$
)
 $(4+4-8+8)$

$$\therefore \text{ Focus } = \left(\frac{4+4}{2}, \frac{-8+8}{2}\right) = (4, 0)$$
$$\therefore a = 4 \text{ and vertex is } (0, 0)$$
Equation of the parabola is $y^2 = 4ax$

Equation of the parabola is $y^2 = x^2 = 4(4)x$

$$\Rightarrow \quad y = 4(4).$$
$$\Rightarrow \quad y^2 = 16x$$

- 2. Find the equation of the ellipse in each of the cases given below :
 - (i) foci $(\pm 3, 0), e = \frac{1}{2}$.
 - (ii) foci $(0, \pm 4)$ and end points of major axis are $(0, \pm 5)$.

(iii) length of latus rectum 8, eccentricity =
$$\frac{3}{5}$$

and major axis on x-axis.

(iv) length of latus rectum 4, distance between foci $4\sqrt{2}$, centre (0, 0) and major axis as y - axis.

Sol. (i) foci (
$$\pm 3, 0$$
), $e = \frac{1}{2}$

Since foci are $(\pm ae, 0)$

$$\Rightarrow \qquad ae = 3$$
$$\Rightarrow \qquad a \cdot \frac{1}{2} = 3 \Rightarrow a = 6$$

and $b^2 = a^2 (1 - e^2)$

 $b^{2} = 36\left(1 - \frac{1}{4}\right)$ $b^{2} = 36\left(\frac{3}{4}\right)$ $b^{2} = 27$

Centre is (0, 0)

 \Rightarrow

: Equation of the ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

= 1

$$\frac{x^2}{36} + \frac{y^2}{27}$$

(ii) Foci (0, ±4) and end points of major axis are (0, ±5)
Since foci are (0, ±be) ⇒ be = 4
End points of major axis are (0, ±5)

$$\Rightarrow b = 5$$

$$\therefore 5(e) = 4 \Rightarrow e = \frac{4}{5}$$

Also, $a^2 = b^2(1 - e^2)$

$$\Rightarrow a^2 = 25\left(1 - \frac{16}{25}\right) = 25\left(\frac{25 - 16}{25}\right)$$

$$\Rightarrow a^2 = 9$$

Equation of the ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

$$\Rightarrow \frac{x^2}{9} + \frac{y^2}{25} = 1$$

🎲 Sura's 🗯 XII Std - Mathematics 🛶 Volume I

(iii) Length of latus rectrum = 8, $e = \frac{3}{5}$ and major axis on x-axis.

Given
$$\frac{2b^2}{a} = 8, e = \frac{3}{5}$$

 $b^2 = 4a$
 $b^2 = a^2(1 - e^2)$
 $4a = a^2\left(1 - \frac{9}{25}\right)$
 $4 = a\left(\frac{25 - 9}{25}\right)$
 $100 = a(16)$
 $a = \frac{100}{16} = \frac{25}{4} \Rightarrow a^2 = \frac{625}{16}$
 $b^2 = 4 \times \frac{25}{4} = 25$

Since major axis is on *x*-axis, equation of the ellipse is

$$\frac{(x-0)^2}{a^2} + \frac{(y-0)^2}{b^2} = 1$$

$$\Rightarrow \qquad \frac{x^2}{\frac{625}{16}} + \frac{y^2}{25} = 1$$

$$\Rightarrow \qquad \frac{16x^2}{625} + \frac{y^2}{25} = 1$$

(iv) Length of latus rectum = 4, distance between foci = $4\sqrt{2}$ major axis is y-axis.

> Given $\frac{2b^2}{a} = 4$ and distance between foci = $2ae = 4\sqrt{2}$ $\Rightarrow \qquad ae = 2\sqrt{2}$ $\Rightarrow \qquad a^2e^2 = 8 \qquad ...(1)$

orders@surabooks.com

PH:9600175757 / 8124301000

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Chapter 5 🗯 Two Dimensional Analytical Geometry - II

 $\frac{2b^2}{a} = 4 \Longrightarrow b^2 = 2a \qquad \dots (2)$ We know $b^2 = a^2(1-e^2)$ $\Rightarrow b^2 = a^2 - a^2 e^2$ $\Rightarrow 2a = a^2 - 8$ [using (1) and (2)] $\Rightarrow a^2 - 2a - 8 = 0$ On factorising we get (a-4)(a+2) = 0a = 4 or -2 \Rightarrow a = 4[$\therefore a = -2$ is not possible] $a^2 = 16$ \Rightarrow :. From (2), $b^2 = 2(4) = 8$

Hence, the equation of the ellipse is

 $\frac{x^2}{8} + \frac{y^2}{16} = 1$ [:: Major axis is y -axis]

Find the equation of the hyperbola in each of the cases given below:

foci (±2, 0) eccentricity = $\frac{3}{2}$ (i)

- **(ii)** Centre (2,1), one of the foci (8,1) and corresponding directrix x = 4.
- passing through (5, -2) and length of (iii) the transverse axis along x axis and of length 8 units.
- Sol. (i) Given foci $(\pm 2, 0) \Rightarrow ae = 2$ and centre is (0, 0)

$$a\left(\frac{3}{2}\right) = 2 \Rightarrow a = \frac{4}{3}$$

$$b^2 = a^2(e^2 - 1)$$

$$\Rightarrow b^2 = \frac{16}{9}\left(\frac{9}{4} - 1\right) = \frac{16}{9}\left(\frac{9 - 4}{4}\right) = \frac{16}{9} \times \frac{5}{4}$$

$$\Rightarrow b^2 = \frac{4 \times 5}{9} = \frac{20}{9}$$

: Equation of the hyperbola is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

$$\frac{x^2}{\frac{16}{9}} - \frac{y^2}{\frac{20}{9}} = 1$$
$$\frac{9x^2}{\frac{16}{16}} - \frac{9y^2}{20} = 1$$

(ii)
$$ae = \text{distance between centre and focus}$$

 $ae = \sqrt{(8-2)^2 + (1-1)^2} = \sqrt{6^2} = 6 \dots (1)$

Also $\frac{a}{e}$ = distance between centre and directrix

$$\frac{a}{e} = \sqrt{(4-2)^2 + (1-1)^2} = \sqrt{2^2} = 2$$

[:: (4, 1) is a point on the directrix

[
$$::$$
 (4, 1) is a point on the directrix]

$$(1) \times (2) \rightarrow a \not e \times \frac{a}{\not e} = 6 \times 2$$

$$\Rightarrow \qquad a^2 = 12$$

$$(1) \rightarrow \qquad a^2 e^2 = 36$$

$$12(e^2) = 36$$

$$\Rightarrow \qquad e^2 = 3$$

$$\Rightarrow \qquad e = \sqrt{3}$$

Also, $b^2 = a^2(e^2 - 1) = 12(3 - 1) = 12(2) = 24$: Equation of the hyperbola is

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

$$\Rightarrow \frac{(x-2)^2}{12} - \frac{(y-1)^2}{24} = 1$$

(iii) Passing through (5, -2) length of the transverse axis is a long x-axis and of length 8 units.

$$2a = 8 \Rightarrow a = 4$$

Since the transverse axis is along *x*-axis, centre is (0, 0)

Equation of the hyperbola is

$$\frac{x^2}{16} - \frac{y^2}{b^2} = 1$$

Since (5, -2) passes through the parabola,

$$\frac{25}{16} - \frac{4}{b^2} = 1 \implies \frac{4}{b^2} = \frac{25}{16} - 1 = \frac{25 - 16}{16} = \frac{9}{16}$$
$$\therefore b^2 = \frac{16 \times 4}{9} = \frac{64}{9}$$

: Equation of the hyperbola is

$$\frac{x^2}{16} - \frac{y^2}{\frac{64}{9}} = 1 \Rightarrow \frac{x^2}{16} - \frac{9y^2}{64} = 1$$

Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

(i)
$$y^2 = 16x$$
 (ii) $x^2 = 24y$
(iii) $y^2 = -8x$ (iv) $x^2 - 2x + 8y + 17 = 0$
(v) $y^2 - 4y - 8x + 12 = 0$

orders@surabooks.com

 \Rightarrow

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

(i)
$$y^2 = 16x$$

The given parabola is right open parabola
and $4a = 16 \Rightarrow a = 4$.
(a) Vertex is $(0, 0)$
 $\Rightarrow h = 0, k = 0$
(b) focus is $(h + a, 0 + k)$
 $\Rightarrow (0 + 4, 0 + 0) = (4, 0)$
(c) Equation of directrix is $x = h - a$
 $\Rightarrow x = 0 - 4 \Rightarrow x = -4$
(d) Length of latus rectum is $4a = 16$.
(i) $x^2 = 24y$
The given parabola is open upward
parabola and $4a = 24 \Rightarrow a = 6$.
(a) Vertex is $(0, 0)$
 $\Rightarrow h = 0, k = 0$
(b) focus is $(0 + h, a + k)$
 $\Rightarrow (0 + 0, 6 + 0) = (0, 6)$
(c) Equation of directrix is $y = k - a$
 $\Rightarrow y = 0 - 6 \Rightarrow y = -6$
(d) Length of latus rectum is $4a = 24$.
(ii) $y^2 = -8x$
The given parabola is left open parabola
and $4a = 8 \Rightarrow a = 2$.
(a) Vertex is $(0, 0)$
 $\Rightarrow h = 0, k = 0$
(b) focus is $(h - a, 0 + k)$
 $\Rightarrow (0 - 2, 0 + 0)$
 $\Rightarrow (-2, 0)$
(c) Equation of directrix is $x = h + a$
 $\Rightarrow x = 0 + 2 \Rightarrow x = 2$
(d) Length of latus rectum is $4a = 8$.
(iv) $x^2 - 2x + 8y + 17 = 0$
 $x^2 - 2x = -8y - 17$
Adding 1 both sides, we get
 $x^2 - 2x + 1 = -8y - 17 + 1$
 $\Rightarrow (x - 1)^2 = -8y - 16 = -8(y + 2)$
 $\Rightarrow (x - 1)^2 = -8(y + 2)$
This is a open downward parabola, latus
rectum $4a = 8 \Rightarrow a = 2$.
(a) Vertex is $(1, -2)$
 $\Rightarrow h = 1, k = -2$
(b) focus is $(0 + h, -a + k)$
 $\Rightarrow (0 + 1, -2 - 2)$
 $\Rightarrow (1, -4)$

🎲 Sura's 🔿 XII Std - Mathematics 🍑 Volume I

- (c) Equation of directrix is y = k + a $\Rightarrow y = -2 + 2 \Rightarrow y = 0$
- (d) Length of latus rectum is 4a = 8 units.

(v)
$$y^2 - 4y - 8x + 12 = 0$$

 $y^2 - 4y = 8x - 12$
Adding 4 both sides, we get,
 $y^2 - 4y + 4 = 8x - 12 + 4 = 8x - 8$
 $\Rightarrow (y - 2)^2 = 8(x - 1)$
This is a right open parabola and latus
rectum is $4a = 8 \Rightarrow a = 2$.
(a) Vertex is $(1, 2) \Rightarrow h = 1, k = 2$
(b) focus is $(h + a, 0 + k)$
 $\Rightarrow (1 + 2, 0 + 2)$
 $\Rightarrow (3, 2)$
(c) Equation of directrix is $x = h - a$

$$\Rightarrow x = 1 - 2$$
$$\Rightarrow x = -1$$

- (d) Length of latus rectum is 4a = 8 units.
- 5. Identify the type of conic and find centre, foci, vertices and directrices of each of the following.

(i)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
 (ii) $\frac{x^2}{3} + \frac{y^2}{10} = 1$
(iii) $\frac{x^2}{25} - \frac{y^2}{144} = 1$ (iv) $\frac{y^2}{16} - \frac{x^2}{9} = 1$

of. (i)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
 is in the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
Here $a^2 = 25$ and $b^2 = 9$

We know
$$e^2 = \frac{a^2 - b^2}{a^2} = \frac{25 - 9}{25} = \frac{16}{25}$$

 $e = \frac{4}{5}$ and $a = 5$

Hence $ae = 5 \times \frac{4}{5}$

$$ae = 4$$
 and $\frac{a}{e} = \frac{5}{4} = 5 \times \frac{5}{4}$
 $\frac{a}{a} = \frac{25}{4}$

Major axis *x* axis.

Center = (0, 0) Foci = (± *ae*, 0) = (± 4, 0) Vertices = (± *a*, 0) = (± 5, 0) Directrix $x = \pm \frac{a}{e} = \pm \frac{25}{4}$

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

Chapter 5 - Two Dimensional Analytical Geometry - II

(ii) Given equation is $\frac{x^2}{3} + \frac{y^2}{10} = 1$ is in the form $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$ Here $a^2 = 10$ and $b^2 = 3$ We know $e^2 = \frac{a^2 - b^2}{a^2} = \frac{10 - 3}{10} = \frac{7}{10}$ $e = \frac{\sqrt{7}}{\sqrt{10}}$ and $a = \sqrt{10}$ Hence $ae = \sqrt{10} \times \frac{\sqrt{7}}{\sqrt{10}}$ $ae = \sqrt{7}$ and $\frac{a}{e} = \frac{\sqrt{10}}{\sqrt{7}} = \sqrt{10} \times \frac{10}{\sqrt{7}}$ $\frac{a}{e} = \frac{10}{\sqrt{7}}$ Major axis y axis. Center = (0, 0)Foci = $(0, \pm ae) = (0, \pm \sqrt{7})$ Vertices = $(0, \pm a) = (0, \pm \sqrt{10})$ Directrix $y = \pm \frac{a}{e} = \pm \frac{10}{\sqrt{7}}$ (iii) Given equation is $\frac{x^2}{25} - \frac{y^2}{144} = 1$ is in the form $\frac{x^2}{2} - \frac{y^2}{x^2} = 1$ Here $a^2 = 25$ and $b^2 = 144$ We know $e^2 = \frac{a^2 + b^2}{a^2} = \frac{25 + 144}{25} = \frac{169}{25}$ $e = \frac{13}{5}$ and a = 5Hence $ae = 5 \times \frac{13}{5}$ $ae = 13 \text{ and } \frac{a}{e} = \frac{5}{\frac{13}{5}} = 5 \times \frac{5}{13}$ a = 25 $\frac{a}{e} = \frac{25}{12}$ Transverse axis x axis. Center = (0, 0)Foci = $(0, \pm ae, 0) = (\pm 13, 0)$ Vertices = $(\pm a, 0) = (\pm 5, 0)$ Directrix $y = \pm \frac{a}{a} = \pm \frac{25}{12}$

(iv) $\frac{y^2}{16} - \frac{x^2}{9} = 1$ is in the form $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ Here $a^2 = 16$ and $b^2 = 9$ We know $e^2 = \frac{a^2 + b^2}{a^2} = \frac{16 + 9}{16} = \frac{25}{16}$ $e = \frac{5}{4}$ and a = 4Hence $ae = 4 \times \frac{5}{4}$ ae = 5 and $\frac{a}{e} = \frac{4}{5} = 4 \times \frac{4}{5}$ $\frac{a}{e} = \frac{16}{5}$ Transverse axis y axis. Center = (0, 0)Foci = $(0, \pm ae, 0) = (0, \pm 5)$ Vertices = $(0, \pm a) = (0, \pm 4)$ Directrix $y = \pm \frac{a}{e} = \pm \frac{16}{5}$

Prove that the length of the latus rectum of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $\frac{2b^2}{a}$. [PTA-2] The latusrectum LL' of the hyperbola passes through S(*ae*, 0)

$$\therefore \text{ L is } (ae, y_1)$$

Substituting L in $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ we get,
 $\frac{a^2e^2}{a^2} - \frac{y_1^2}{b^2} = 1 \Rightarrow e^2 - \frac{y_1^2}{b^2} = 1$

$$\Rightarrow e^2 - 1 = \frac{y_1^2}{b^2} \qquad [b^2 = a^2(e^2 - 1)]$$

$$\Rightarrow y_1^2 = b^2(e^2 - 1) \qquad \Rightarrow \frac{b^2}{a^2} = e^2 - 1]$$

$$\Rightarrow y_1^2 = b^2\left(\frac{b^2}{a^2}\right) \qquad \Rightarrow y_1^2 = \frac{b^4}{a^2}$$

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

orders@surabooks.com

PH:9600175757 / 8124301000

https://t.me/kalvinesan

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

orders@surabooks.com

PH:9600175757 / 8124301000

This is Only for Sample for Full Book Order Online or Available at All Leading Bookstores

🖞 Sura's 🖛 XII Std - Mathematics 🖛 Govt. Supplementary Exam - Aug. 2021

PART - II

- Note: (i) Answer any seven questions.
 - (ii) Question number **30** is compulsory.

21. If
$$z = (2+3i)(1-i)$$
 then prove that $z^{-1} = \frac{5}{26} - i\frac{1}{26}$.

- **22.** If α and β are the roots of $x^2 5x + 6 = 0$ then prove that $\alpha^2 \beta^2 = \pm 5$.
- **23.** For what value of x does $\sin x = \sin^{-1}x$?
- **24.** Show that the three vectors $2\hat{i} + 3\hat{j} + \hat{k}$, $\hat{i} 2\hat{j} + 2\hat{k}$ and $3\hat{i} + \hat{j} + 3\hat{k}$ are coplanar.
- **25.** Prove that $\lim_{x \to \infty} \left(\frac{e^x}{x^m}\right)$, where *m* is a positive integer, is ∞ .
- **26.** If $g(x) = x^2 + \sin x$, then find *dg*.
- **27.** Show that the solution of $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$ is $\sin^{-1}y = \sin^{-1}x + C$ (or) $\sin^{-1}x = \sin^{-1}y + C$.
- **28.** If X is the random variable with distribution function F(x), given by : F(x) = $\begin{cases} 0, & -\infty < x < 0 \\ \frac{1}{2}(x^2 + x) & 0 \le x < 1 \\ 1, & 1 \le x < \infty \end{cases}$ then prove that the p.d.f. is $f(x) = \begin{cases} \frac{1}{2}(2x+1) & 0 \le x < 1 \\ 0 & 0 \end{cases}$, otherwise
- **29.** The probability density function of X is given by $f(x) = \begin{cases} kxe^{-2x} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$ Prove that the value of k is 4.
- **30.** Show that the differential equation corresponding to $y = A \sin x$, where A is an arbitrary constant, is $y = y' \tan x$.

PART - III

- Note: (i) Answer any seven questions.
 - (ii) Question number 40 is compulsory.

- **31.** Show that the rank of the matrix $\begin{bmatrix} 0 & 1 & 2 & 1 \\ 0 & 2 & 4 & 3 \\ 8 & 1 & 0 & 2 \end{bmatrix}$ is 3. **32.** If $A = \begin{bmatrix} 8 & -4 \\ -5 & 3 \end{bmatrix}$, verify that A(adj A) = (adj A) A = |A| I.
- **33.** Show that the points 1, $-\frac{1}{2} + \frac{i\sqrt{3}}{2}$ and $-\frac{1}{2} \frac{i\sqrt{3}}{2}$ are the vertices of an equilateral triangle of side length $\sqrt{3}$.
- **34.** If the sides of a cubic box are increased by 1, 2, 3 units respectively to form a cuboid, then the volume is increased by 52 cubic units. Show that the volume of the cuboid is 60 cubic units.

orders@surabooks.com

PH:9600175757 / 8124301000

Please Send your Materials, Question Papers & Answer Keys to Email : kalvinesan.com@gmail.com

 $7 \times 3 = 21$

415

Orders a sufiab Qoks PGOMAnswer Keys to Email : kalvinesan.com@gmail.com