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Scope of Mathematics

Learning Objectives

ICT

Summary

Evaluation

Books for Reference

Scope for
Higher Order Thinking

Glossary

HOW TO USE THE BOOK

Awareness on the scope of higher educational opportunities; courses,
institutions and required competitive examinations.
Possible financial assistance to help students climb academic ladder.

o Overview of the unit
« Give clarity on the intended learning outcomes of the unit.

o Additional facts related to the topics have been included to arouse interest

for searching of more information for deeper and wider learning.

Visual representation of concepts with illustrations
Videos, animations, and tutorials.

To increase the span of attention of concepts

To visualize the concepts for strengthening and understanding

To link concepts related to one unit with other units.

To utilize the digital skills in classroom learning and providing students
experimental learning.

Recapitutation of the salient points of each chapter for recalling the
concepts learnt.

Assessing student’s understanding of concepts and get them acquainted
with solving exercise problems.

List of relevant books for further reading.

To motivate students aspiring to take up competitive examinations such
as JEE, KVPY, Math olympiad, etc., the concepts and questions based on
Higher Order Thinking are incorporated in the content of this book.

Frequently used Mathematical terms have been given with their
Tamil equivalents.

Mathematics Learning

The correct way to learn is to understand the concepts throughly. Each chapter opens with an Introduction,
Learning Objectives, Various Definitions, Theorems, Results and Illustrations. These in turn are followed by
solved examples and exercise problems which have been classified into various types for quick and effective
revision. One can develop the skill of solving mathematical problems only by doing them. So the teacher's
role is to teach the basic concepts and problems related to it and to scaffold students to try the other problems
on their own. Since the first year of Higher Secondary is considered to be the foundation for learning higher
mathematics, the students must be given more attention to each and every concept mentioned in this book.
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Sets, Relations and
Functions

“a set is many that allows itself to be thought of as a one”

Cantor

1.1 Introduction

The concepts of sets, relations and functions occupy a fundamental place in the mainstream of
mathematical thinking. As rightly stated by the Russian mathematician Luzin the concept of functions
did not arise suddenly. It underwent profound changes in time. Galileo (1564-1642) explicitly used
the dependency of one quantity on another in the study of planetary motions. Descartes (1596-
1650) clearly stated that an equation in two variables, geometrically represented by a curve, indicates
dependence between variable quantities. Leibnitz (1646-1716) used the word “function”, in a 1673
manuscript, to mean any quantity varying from point to point of a curve. Dirichlet (1805-1859),
a student of Gauss, was credited with the modern “formal” definition of function with notation
y = f(x). In the 20" century, this concept was extended to include all arbitrary correspondence
satisfying the uniqueness condition between sets and numerical or non-numerical values.

With the development of set theory, initiated by Cantor (1845-1918),
the notion of function continued to evolve. From the notion of correspon-
dence, mathematicians moved to the notion of relation. However even
now in the theory of computation, a function is not viewed as a relation
but as a computational rule. The modern definition of a function is given
in terms of relation so as to suit to develop artificial intelligence.

In the previous classes, we have studied and are well versed with the
real numbers and arithmetic operations on them. We also learnt about
sets of real numbers, Venn diagrams, Cartesian product of sets, basic
definitions of relations and functions. For better understanding, we recall

more about sets and Cartesian products of sets. In this chapter, we see a Cantor
new facelift to the mathematical notions of “Relations” and “Functions”. 1845 -1918
(Learning Objectives )

On completion of this chapter, the students are expected to

list and work with many properties of sets and Cartesian product;

know the concepts of constants, variables, intervals and neighbourhoods;

understand about various types of relations; create relations of any required type;

represent functions in different ways;

work with elementary functions, types of functions, operations on functions including inverse
of a bijective function;

e identify the graphs of some special functions;

\_° visualize and sketch the graphs of some relatively complicated functions. Y,
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1.2 Sets

In the earlier classes, we have seen that a sef is a collection of well-defined objects. As the theory of
sets is the building blocks of modern mathematics, one has to learn the concepts of sets carefully and
deeply. Now we look at the term “well-defined” a little more deeply. Consider the two statements:

(i) The collection of all beautiful flowers in Ooty Rose Garden.
(i) The collection of all old men in Tamilnadu.

The terms “beautiful flowers” and “old men” are not well-defined. We cannot define the term
“beautiful flower” in a sharp way as there is no concrete definition for beauty because the concept of
beauty varies from person to person, content to content and object to object. We should not consider
statements like “the collection of all beautiful flowers in Ooty Rose Garden” as a set. Now, can we
say “the collection of all red flowers in Ooty Rose Garden™ a set? The answer is “yes”.

One may consider a person of age 60 as old and others may not agree. There is no specific and
concrete definition for “old men”. The second statement can be made more sharply as

“the collection of all men in Tamilnadu of age greater than 70”.

Now, the above collection becomes a set because of definiteness in the age. Thus, the description of
a set should enable us to concretely decide whether a given particular object (element) is available in
the collection or not. So set is a distinguishable collection of objects.

We have also seen and learnt to use symbols like €, C, C, U and N. Let us start with the question:

“If A and B are two sets, is it meaningful to write A € B?”.

At the first sight one may hurry to say that this is always meaningless by telling, “the symbol &
should be used between an element and a set and it should not be used between two sets”. The first
part of the statement is true whereas the second part is not true. For example, if A = {1,2} and
B ={1,{1,2},3,4}, then A € B.In this section we shall discuss the meaning of such symbols more
deeply.

As we learnt in the earlier classes the set containing no elements is called an empty set or a void
set. It is usually denoted by () or { }. By A C B, we mean every element of the set A is an element of
the set B. In this case, we say A is a subset of B and B is a super set of A. For any two sets A and
B,if A C Band B C A, then the two sets are equal. For any set A, the empty set () and the set A are
always subsets of A. These two subsets are called trivial subsets. Further, we say A is a proper subset
of B if Ais a subset of B and A # B. That is, B contains all elements of A and at least one element
which is not in A. Note that, as every element of A is an element of A, we have A C A. Thus, any
set is a subset of itself. This subset is called an improper subset. In other words, for any set A, A is
the improper subset of A. It is known that, N C W C Z C Q C R, where N denotes the set of all
natural numbers or positive integers, W denotes the set of all non-negative integers, Z denotes the set
of all integers, (Q denotes the set of all rational numbers and R denotes the set of all real numbers.
Note that, the set of all irrational numbers is a subset of R but not a subset of any other set mentioned
above.

We learnt that the union of two sets A and B is denoted by A U B and is defined as

AUB={zx:x € Aorz € B}

and the intersection as
ANB={x:x € Aandz € B}.

Two sets A and B are disjoint if they do not have any common element. That is, A and B are
disjointif AN B = 0.

Sets, Relations and Functions 2
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n
Let us see some more notations. We are familiar with notations like 3 a;. This in fact stands for
i=1

ay + as + - - - + a,. Similarly we can use the notations -@1 A; and 61 A;todenote A, UA;U---UA,
and A; N Ay N---N A, respectively. - -

Thus, 'Liﬁl A; ={x :x € A, for some i} and 61 A; = {x : x € A, for each i}. These notations are
useful when we discuss more number of sets.

If A is a set, then the set of all subsets of A is called the power set of A and is usually denoted
as Z(A). Thatis, Z(A) = {B : B C A}. The number of elements in &?(A) is 2", where n is the
number of elements in A.

Now, to define the complement of a set, it is necessary to know about the concept of universal
set. Usually all sets under consideration in a mathematical process are assumed to be subsets of some
fixed set. This basic set is called the universal set. For example, depending on the situation, for the set
of prime numbers, the universal set can be any one of the sets containing the set of prime numbers.
Thus, one of the sets N, W, Z Q, R may be taken as a universal set for the set of prime numbers,
depending on the requirement. Universal set is usually denoted by U'.

To define the complement of a set, we have to fix the universal set. Let A be a subset of the
universal set U. The complement of A with respect to U is denoted as A’ or A° and defined as
A ={zr:zeUandz ¢ A}.

The set difference of the set A to the set B is denoted by either A — B or A\B and is defined as

A—B={a:ac Aanda ¢ B}.

Note that,
HU—-A=A4 () A-A=0 G)0-A=0 @Gv) A-0=A (v) A-U=0.
The symmetric difference between two sets A and B is denoted by AAB and is defined as
AAB = (A — B) U (B — A). Actually the elements of AAB are the elements of A U B which
are notin AN B. Thus AAB = (AUB) — (AN B).
A set X is said to be a finite set if it has k elements for some k£ € W. In this case, we say the

finite set X is of cardinality k and is denoted by n(X). A set is an infinite set if it is not finite. For
an infinite set A, the cardinality is infinity. If n(A) = 1, then it is called a singleton set. Note that

n(@) =0and n({0}) = 1.

1.2.1 Properties of Set Operations

We now list out some of the properties.

Commutative

i) AUB=BUA (i) ANB=BnNA.
Associative

(i) (AUB)UC=AU(BUC) i) (ANB)NC=An(BNCOC).
Distributive

i) AUu(BNC)=(AuB)N(AUC) () AN(BUC)=(ANB)U(ANCQO).
Identity

i Aup=A (i) ANU=A.
Idempotent

i) AUA=A (i) ANA=A.
Absorption

i) AUANB)=A (i) An(AuUB)=A.

3 1.2 Sets
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De Morgan Laws
i) (AuB)=AnpB () (AnB)Y=AUB
(iii) A—-(BUC)=(A-B)N(A-C) (@Gv) A—(BNnC)=(A-B)U(A-2C).
On Symmetric Difference
(i) AAB = BAA (ii)) (AAB)AC = AA(BAC)
(iii)) AN(BAC)=(ANB)A(ANCQC).
On Empty Set and Universal Set

i 0=U ) U =10
(i) AUA =U (ivy AnA =0
vy AUuU=U (viy ANU = A.
On Cardinality

(i) For any two finite sets A and B, n(AU B) = n(A) + n(B) — n(AN B).
(ii) If A and B are disjoint finite sets, then n(A U B) = n(A) + n(B).
(iii) For any three finite sets A, B and C,
n(AUBUC) =n(A)+n(B)+n(C)—n(ANB) —n(ANC)—n(BNC)+n(ANBNC).

1.3 Cartesian Product
We know that the Cartesian product of sets is nothing but a set of ordered elements. In particular,
Cartesian product of two sets is a set of ordered pairs, while the Cartesian product of three sets is a
set of ordered triplets. Precisely, let A, B and C' be three sets. Then the Cartesian product of A with
B is denoted by A x B. It is defined by
Ax B={(a,b):a € Abe B}

Similarly, the Cartesian product A x B x C'is defined by

Ax BxC={(a,byc):a€ Abe B,ce C}.

Thus A x A = {(a,b) : a,b € A}.

Is it correct to say A x A = {(a,a) : a € A}?

It is important that the elements of the Cartesian product are ordered and hence, for non-empty sets,
AX B# B x A, unless A = B.

That is, for non-empty sets A x B = B x A if and only if A = B. We know that R denotes the set of
real numbers and

RxR = {(z,y):x,y€R}.
RxRxR = {(z,y,2) :2,y,2z € R}.
Symbolically, R x R can be represented as R? and R x R x R as R?. Note that R x R is a set of
ordered pairs and R x R x R is a set of ordered triplets.

If A={1,2,3} and B = {2,4,6} then

Ax B={(1,2),(1,4),(1,6),(2,2),(2,4), (2,6), (3,2), (3,4),(3,6) }.

Sets, Relations and Functions 4
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Here A x B is a subset of R x R. The number of elements in A x B is the product of the number
of elements in A and the number of elements in B, that is, n(A x B) = n(A)n(B), if A and B are
finite. Further n(A x B x C) = n(A)n(B)n(C), if A, B and C are finite.

It is easy to see that the following are the subsets of R x R.

(i) {(z,2x):z R} () {(z,z?) :z € R}
(iii)) {(z,+/x): z is anon-negative real number}  (iv) {(z? z):z € R}.
(v) {(x,—+/z) : z is a non-negative real number}

Example 1.1 Find the number of subsets of Aif A={z:2=4n+1, 2<n <5n¢e N}

Solution:
Clearly A={z:z=4n+1, n=2,3,4,5} = {9,13,17,21}.
Hence n(A) = 4. This implies that n(Z(A)) = 2% = 16.

Example 1.2 In a survey of 5000 persons in a town, it was found that 45% of the persons know
Language A, 25% know Language B, 10% know Language C, 5% know Languages A and B, 4%
know Languages B and C, and 4% know Languages A and C'. If 3% of the persons know all the
three Languages, find the number of persons who knows only Language A.

Solution:
This problem can be solved either by property of cardinality or by Venn diagram.
Cardinality: Given that n(A) = 45% of 5000 = 2250

Similarly, n(B) = 1250, n(C) = 500,n(AN B) = 250,n(BNC) = 200,n(C N A) = 200 and

n(ANBNC)=150.

The number of persons who knows only Language A is

n(ANB'NC") = n{AN(BUC)'} =n(A) —n{AN(BUC)}.
= n(A)—n(ANB)—n(ANC)+n(ANBNCQC).
2250 — 250 — 200 + 150 = 1950.

Thus the required number of persons is 1950.
Venn diagram: We draw the Venn Diagram using percentage.

e
ava

©

(09)

Figure 1.1

From Figure 1.1, the percentage of persons who knows only Language A is 39. Therefore, the

required number of persons is 5000 X % = 1950.

5 1.3 Cartesian Product
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Example 1.3 Prove that
(AUBUC)N(ANB' NC))U((AUBUC)N(B'NnC")=B"'nC".

Solution:

We have ANB'NC' CAC AUB'UC and hence (AUB' UC)N(ANB'NC")=ANnB'NC".
Also, BNC'"CC"CAUBUC andhence ( AUBUC)N(B'NC")=B'nC".

Nowas ANB'NC"C B'NC’, we have

(AUB'UC)N(ANB NC)U((AUBUC)N(B'NC") =B nC".

l__\lg Try to simplify the above expression using Venn diagram.

Example 1.4 If X = {1,2,3,...10} and A = {1,2, 3,4, 5}, find the number of sets B C X such
that A — B = {4}

Solution:

For every subset C' of {6,7,8,9,10},let B =CU{1,2,3,5}. Then A — B = {4}. In other words,
for every subset C of {6,7,8,9,10}, we have a unique set B so that A — B = {4}. So number of
sets B C X such that A — B = {4} and the number of subsets of {6,7,8,9,10} are the same. So
the number of sets B C X such that A — B = {4} is 2° = 32.

Example 1.5 If A and B are two sets so that n(B — A) = 2n(A — B) = 4n(A N B) and if
n(AU B) = 14, then find n(Z(A)).

Solution:

To find n(F(A)), we need n(A).

Let n(AN B) = k. Then n(A — B) = 2k and n(B — A) = 4k.

Now n(AUB) =n(A—B) +n(B - A)+n(ANB) = 7k.

It is given that n(A U B) = 14. Thus 7k = 14 and hence k = 2.

Son(A—B)=4andn(B — A) = 8. Asn(A) = n(A— B) +n(AN B), we get n(A) = 6 and
hence n(#(A)) = 26 = 64.

Example 1.6 Two sets have m and k elements. If the total number of subsets of the first set is 112
more than that of the second set, find the values of m and k.

Solution:
Let A and B be the two sets with n(A) = m and n(B) = k. Since A contains more elements
than B, we have m > k. From the given conditions we see that 2™ — 2k — 112. Thus we get,
ok(gm—k _ 1) = 2% x 7.

Then the only possibility is & = 4 and 2™ % — 1 = 7. So m — k = 3 and hence m = 7.

Sets, Relations and Functions 6
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Example 1.7 If n(A) = 10 and n(AN B) = 3, find n((AN B)' N A).

Solution:
(Zﬂg?’ﬁA:(A’UB’)ﬂA:(A’ﬂA)U(B’ﬁA):(Z)U(B’OA):(B’OA):A—B.
Son((ANB)NA)=n(A—B)=n(A) —n(ANB)="T.

Example 1.8 If A = {1,2,3,4} and B = {3,4,5,6}, find n((AU B) x (AN B) x (AAB)).

Solution:
We have n(AU B) = 6,n(AN B) =2and n(AAB) = 4.
So,n((AUB) x (AN B) x (AAB)) =n(AUB) x n(AN B) x n(AAB) =6 x 2 x 4 = 48.

Example 1.9 If &7(A) denotes the power set of A, then find n(Z(Z(Z2(0)))).

Solution:
Since Z(()) contains 1 element, 22(Z(())) contains 2! elements and hence (2 (Z(()))) contains
22 elements. That is, 4 elements.

Exercise - 1.1

. Write the following in roster form.
(i) {x € N:2? < 121 and z is a prime}.
(i) the set of all positive roots of the equation (z — 1)(z + 1)(z* — 1) = 0.
(ifi) {z € N: 4z +9 < 52}.
(iv) {z: i—;;‘ =3,z € R—{-2}}.
. Write the set {—1, 1} in set builder form.
. State whether the following sets are finite or infinite.

(i) {r € N : z is an even prime number}.
(ii) {=z € N : z is an odd prime number}.
(iii) {x € Z : x is even and less than 10}.
(iv) {z € R : x is a rational number}.
(v) {x € N: zis a rational number}.
. By taking suitable sets A, B, C, verify the following results:
(i) Ax(BNC)=(AxB)n(AxC).
(i) Ax(BUC)=(AxB)U(AxC(C).
(i) (Ax B)Nn(Bx A)=(ANB) x (BN A).
(iv C—(B-—A)=(CnAUCNB).
V) (B—A)NC=(BNC)—A=Bn(C—-A).
(vi) ( B—A)UC=(BUC)—(A—-C).
. Justify the trueness of the statement:

“An element of a set can never be a subset of itself.”

Ifn(P(A)) =1024,n(AU B) = 15 and n(Z(B)) = 32, then find n(A N B).

. If n(AN B) =3 and n(A U B) = 10, then find n(Z(AAB)).

. For aset A, A x A contains 16 elements and two of its elements are (1,3) and (0, 2). Find the
elements of A.

7 1.3 Cartesian Product
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9. Let A and B be two sets such that n(A) = 3 and n(B) = 2.If (z,1), (v,2),(2,1) are in A x B,
find A and B, where z, y, z are distinct elements.
10. If A x A has 16 elements, S = {(a,b) € A x A:a <b};(—1,2)and (0, 1) are two elements of
S, then find the remaining elements of S.

1.4 Constants and Variables, Intervals and
Neighbourhoods

To continue our discussion, we need certain prerequisites namely, constants, variables, independent
variables, dependent variables, intervals and neighbourhoods.

1.4.1 Constants and Variables

A quantity that remains unaltered throughout a mathematical process is called a constant. A quantity
that varies in a mathematical process is called a variable. A variable is an independent variable when
it takes any arbitrary (independent) value not depending on any other variables, whereas if its value
depends on other variables, then it is called a dependent variable.

We know the area A of a triangle is given by A = %bh. Here % is a constant and A, b, h are
variables. Moreover b and h are independent variables and A is a dependent variable. We ought to note
that the terms dependent and independent are relative terms. For example in the equation z + y = 1,
x,y are variables and 1 is a constant. Which of x and y is dependent and which one is independent?
If we consider = as an independent variable, then y becomes dependent whereas if we consider y as
an independent variable, then = becomes dependent.

Further consider the following examples:

(i) area of a rectangle A = /b.

(ii) area of a circle A = 7r2.
(iii) volume of a cuboid V' = (bh.

From the above examples we can directly infer that b, h, ¢, r are independent variables; A and V' are
dependent variables and 7 is a constant.

1.4.2 Intervals and Neighbourhoods

The system R of real numbers can be represented by the points on a line and a point on the line can
be related to a unique real number as in Figure 1.2. By this, we mean that any real number can be
identified as a point on the line. With this identification we call the line as the real line.

Figure 1.2

The value increases as we go right and decreases as we go left. If x lies to the left of y on the real
line then x < y. As there is no gap in a line, we have infinitely many real numbers between any two
real numbers.

(Deﬁnition 1.1 \

A subset  of R is said to be an interval if

(1) I contains at least two elements and
(i) a,belTanda <c<bthenc e I.

\Geometrically, intervals correspond to rays and line segments on the real line. )

Sets, Relations and Functions 8
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Note that the set of all natural numbers, the set of all non-negative integers, set of all odd integers,
set of all even integers, set of all prime numbers are not intervals. Further observe that, between any
two real numbers there are infinitely many real numbers and hence the above sets are not intervals.

Consider the following sets:

(i) The set of all real numbers greater than 0.

(i) The set of all real numbers greater than 5 and less than 7.
(ii1) The set of all real numbers x such that 1 < x < 3.
(iv) The set of all real numbers x such that 1 < x < 2.

The above four sets are intervals. In particular (i) is an infinite interval and (ii), (iii) and (iv) are
finite intervals. The term “finite interval” does not mean that the interval contains only finitely many
real numbers, however both ends are finite numbers. Both finite and infinite intervals are infinite sets.
The intervals correspond to line segments are finite intervals whereas the intervals that correspond to
rays and the entire real line are infinite intervals.

A finite interval is said to be closed if it contains both of its end points and open if it
contains neither of its end points. Symbolically the above four intervals can be written as
(0,00),(5,7),[1,3],(1,2]. Note that for symbolic form we used parentheses and square brackets
to denote intervals. ( ) parentheses indicate open interval and | | square brackets indicate closed
interval. The first two sets are open intervals, third one is a closed interval. Note that fourth set is
neither open nor closed, that is, one end open and other end closed.

In particular [1, 3] contains both 1 and 3 and in between real numbers. The interval (1, 3) does not
contain 1 and 3 but contains all in between the numbers. The interval (1, 2] does not contain 1 but
contains 2 and all in between numbers.

Note that co is not a number. The symbols —co and oo are used to indicate the ends of real line.
Further, the intervals (a, b) and [a, b] are subsets of R.

Type of Intervals

There are many types of intervals. Let a, b € R such that a < b. The following table describes various
types of intervals. It is not possible to draw a line if a point is removed. So we use an unfilled circle

[IP%L]

“o” to indicate that the point is removed and use a filled circle “e” to indicate that the point is included.

Interval | Notation Set Diagramatic
Representation
finite (a,b) {z:a<z<b} a b
[a, b] {z:a<x<0b} a b
(a, b {r:a<z<0b} a b
[a, b) {r:a<z<b} a b
infinite | (a,00) {r:a<x<o0} a
[a, 00) {r:a <2< o0} a
(—00,b) {z:—00 < x < b} ) b
(—o0, b] {r:—00 < x < b} ) b
(—00,00) | {zx:—oc0o<z <00} |.
or R or the set of real numbers

9 1.4 Constants and Variables, Intervals and Neighbourhoods
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Write the following intervals in symbolic form.

(i) {z:2eR,-2<x<0} () {rz:zeR0<z<8}
(i) {r:zeR,-8<az< -2} iv) {rz:2eR,-5<z<9}.
Neighbourhood

Neighbourhood of a point ‘a’ is any open interval containing ‘a’. In particular, if € is a positive
number, usually very small, then the e-neighbourhood of ‘a’ is the open interval (a — €, a + €). The
set (a — €,a + €) — {a} is called deleted neighbourhood of ‘a’ and it is denoted as 0 < |z —a| < €
(See Figure 1.3).

4 ( | ) . & (
< C 7] > «< C
a—e a a+e a—e

+—
\J

QO

Figure 1.3

1.5 Relations

We approach the concept of relations in different aspects using real life sense, Cryptography and
Geometry through Cartesian product of sets.

In our day to day life very often we come across questions like, “How is he related to you?”. Some
probable answers are,

(i) He is my father.
(i) He is my teacher.
(ii1) He is not related to me.

From this we see that the word relation connects a person with another person. Extending this
idea, in mathematics we consider relations as one which connects mathematical objects. Examples,

(i) A number m is related to a number n if m divides n in N.
(i1) A real number x is related to a real number y if x < y.
(ii1)) A point p is related to a line L if p lies on L.
(iv) A student X is related to a school .S if X is a student of S.

Illustration 1.1 (Cryptography) For centuries, people have used ciphers or codes, to keep confi-
dential information secure. Effective ciphers are essential to the military, to financial institutions and
to computer programmers. The study of the techniques used in creating coding and decoding these
ciphers is called cryptography.

L
E
T
U
S
w
1
N

O EN<X=XO

Figure 1.4

One of the earliest methods of coding a message was a simple substitution. For example, each
letter in a message might be replaced by the letter that appears three places later in the alphabet.

Sets, Relations and Functions 10
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Using this coding scheme, “LET US WIN” becomes “OHW XVZ LQ”. This scheme was used
by Julius Caesar and is called the Caesars cipher. To decode, replace each letter by the letter three
places before it. This concept is used often in Mental Ability Tests. The above can be represented as
an arrow diagram as given in Figure 1.4.

This can be viewed as the set of ordered pairs

{(£,0),(E, H), (T, W), (U, X), (5, V), (W, 2), (I, L), (N, Q) }

which is a subset of the Cartesian product C' x D where C = {L,E,T,U,S,W,I, N} and
D ={0,H,W,X,V,Z,L,Q}.

P S EEEEEEEEEEEEEEEEEEEE= L)
E > . If “KDUGZRUN” means “HARDWORK?”, then “DFKLHYHPHQW” becomes E
: ~ “ACHIEVEMENT” '
'~ HNnows? “Isit f(x) =z — 37" '
1 1
1 b 1

Illustration 1.2 (Geometry) Consider the following three equations
)2z —y=0 ()2’ —y=0 (i)x—y*=0

() 22 —y=20
The equation 2z — y = 0 represents a straight line. Clearly the points, (1,2), (3,6) lie on
it whereas (1, 1), (3,5), (4,5) are not lying on the straight line. The analytical relation between
x and y is given by y = 2x. The set of all points that lie on the straight line is given as
{(z,2x) : x € R}. Clearly this is a subset of R x R. (See Figure 1.5.)

¥4 y y
/
x—=y =0
X—y=0 x=y*=0
X X X
\
Figure 1.5 Figure 1.6 Figure 1.7

(i) z2 —y = 0.
As we discussed earlier, the relation between = and y is 4y = 2. The set of all points on
the curve is {(z,2?) : # € R} (See Figure 1.6). Again this is a subset of the Cartesian product
R x R.
(iii) c —y> =0
As above, the relation between x and y is y*> = x or y = ++/x, = > 0. The equation can
also be re-written as y = ++/x and y = —+/z. The set of all points on the curve is the union of
the sets {(z,+/z)} and {(z, —/x)}, where z is a non-negative real number, are the subsets of
the Cartesian product R x R. (See Figure 1.7).

From the above examples we intuitively understand what a relation is. But in mathematics, we
have to give a rigorous definition for each and every technical term we are using. Now let us start
defining the term “relation” mathematically.

11 1.5 Relations
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Definition of Relation

Let A = {p,q,r, s,t,u} be a set of students and let B = {X,Y, Z, W} be a set of schools. Let us
consider the following “relation”.

A student a € A is related to a school S € B if “a” is studying or studied in the school S.

Let us assume that p studied in X and now studying in W, ¢ studied in X and now studying in Y,
r studied in X and W, and now studying in Z, s has been studying in X from the beginning, ¢ studied
in Z and now studying in no school, and u never studied in any of these four schools.

Though the relations are given explicitly, it is not possible to give a relation always in this way. So
let us try some other representations for expressing the same relation:

Q) p p q q v v 1T S5 ¢
X W XY X Z W X Z
(i)
)2 q r N t u

X Y Z w
(i) { (p, X), (0, W), (¢, X), (¢, Y), (. X), (r, Z), (r,W), (s, X), (t,2) }

(iv) pRX,pRW,qRX,qRY,rRX,rRZ rRW, sRX, tRZ.

Among these four representations of the relation, the third one seems to be more convenient and
comfortable to deal with a relation in terms of sets.

The set given in the third representation is a subset of the Cartesian product A x B. In Illustrations
1.1 and 1.2 also, we arrived at subsets of a Cartesian product.

Definition 1.2

Let A and B be any two non-empty sets. A relation R from A to B is defined as a subset of the
Cartesian product of A and B. Symbolically R C A x B.

A relation from A to B is different from a relation from B to A.

The set {a € A : (a,b) € R for some b € B} is called the domain of the relation.

The set {b € B : (a,b) € R for some a € A} is called the range of the relation.

Thus the domain of the relation R is the set of all first coordinates of the ordered pairs and the
range of the relation R is the set of all second coordinates of the ordered pairs.

Illustration 1.3 Consider the diagram in Figure 1.8. Here the alphabets are mapped onto the natural
numbers. A simple cipher is to assign a natural number to each alphabet. Here a is represented by
1, b is represented by 2, ..., z is represented by 26. This correspondence can be written as the set

Figure 1.8
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of ordered pairs {(a, 1), (b,2),...,(z,26)}. This set of ordered pairs is a relation. The domain of the
relation is {a, b, ... z} and the range is {1, 2, ..., 26}.

Now we recall that the relations discussed in Illustrations 1.1 and 1.2 also end up with subsets of
the cartesian product of two sets. So the term relation used in all discussions we had so far, fits with
the mathematical term relation defined in Definition 1.2.

The domain of the relation discussed in Illustration 1.1 is the set { L, £, T, U, S, W, I, N} and the
range is {O, H,W, X, V, Z, L, Q}. In llustration 1.2, the domain and range of the relation discussed
for the equation 2z — y = 0 are R and R (See Figure 1.9); for the equation 2% — y = 0, the domain
is R and the range is [0, 00) (See Figure 1.10); and in the case of the third equation z — y* = 0, the
domain is [0, c0) and the range is R (See Figures 1.11 and 1.12).

..y_ D <€
04
Domain

~
<

i
»

Range
g

Domain X Domain Domain X

g =2

(=]

s £

[

Figure 1.9 Figure 1.10
(5] Q
(=] an)
S y=—Vx El
& ~
y=vx Domain Domain

Domain Domain § % 1 ‘

Range
Range

Figure 1.11 Figure 1.12

Note that, the domain of a relation is a subset of the first set in the Cartesian product and the range
is a subset of second set. Usually we call the second set as co-domain of the relation. Thus, the range
of a relation is the collection of all elements in the co-domain which are related to some element in
the domain. Let us note that the range of a relation is a subset of the co-domain.

For any set A, () and A x A are subsets of A x A. These two relations are called extreme relations.
The former relation is an empty relation and the later is an universal relation.

We will discuss more about domain, co-domain and the range in the next section namely,
“Functions”.

If R is a relation from A to B and if (x,y) € R, then sometimes we write 2 Ry (read this as “z is
related to 4) and if (x,%y) ¢ R, then sometimes we write 2Ky (read this as “z is not related to 7).

Though the general definition of a relation is defined from one set to another set, relations defined
on a set are of more interest in mathematical point of view. So let us concentrate on relations defined

on a set.

13 1.5 Relations
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1.5.1 Type of Relations
Consider the following examples:

(i) Let S ={1,2,3,4} and R = {(1,1),(1,3),(2,3)} on S.
(i) Let S ={1,2,3,...10} and define “m is related to n, if m divides n”.
(iii) Let ¥ be the set of all circles in a plane and define “a circle C' is related to a circle C’, if the
radius of C' is equal to the radius of C"”.
(iv) In the set S of all people define “a is related to b, if a is a brother of b”.
(v) Let S be the set of all people. Define the relation on S by the rule “mother of™.

In the second example, as every number divides itself, “a is related a for all a € S”; the same is
true in the third relation also. In the first example “a is related a for all a € S” is not true as 2 is not
related to 2.

It is easy to see that the property “if a is related to b, then b is related to a” is true in the third but
not in the second.

It is easy to see that the property “if a is related to b and b is related to c, then a is related to ¢” is
true in the second and third relations but not in the fifth.

These properties, together with some more properties are very much studied in mathematical
structures. Let us define them now.

ﬁ)eﬁnition 1.3 )

Let S be any non-empty set. Let R be a relation on S. Then

e R is said to be reflexive if a is related to a for all a € S.

e R is said to be symmetric if a is related to b implies that b is related to a.

e R is said to be transitive if “a is related to b and b is related to ¢” implies that « is related to
c.

\These three relations are called basic relations. )

Let us rewrite the definitions of these basic relations in a different form:
Let S be any non-empty set. Let R be a relation on S. Then R is

e reflexive if “(a,a) € Rforalla € S”.
e symmetric if “(a,b) € R = (b,a) € R”.
e transitive if “(a,b), (b,c) € R = (a,c) € R”.

Definition 1.4

Let S be any set. A relation on S is said to be an equivalence relation if it is reflexive, symmetric
and transitive.

Let us consider the following two relations.

(1) In the set S; of all people, define a relation R; by the rule: “a is related to b, if a is a brother of b”.
(2) In the set S, of all males, define a relation R, by the rule: “a is related to b, if a is a brother of b”.

The rules that define the relations on S; and S are the same. But the sets are not same. R; is
not a symmetric relation on S; whereas R» is a symmetric relation on Sy. This shows that not only
the rule defining the relation is important, the set on which the relation is defined, is also important.
So whenever one considers a relation, both the relation as well as the set on which the relation is
defined have to be given explicitly. Note that the relation {(1, 1), (2,2), (3,3), (1,2)} is reflexive if it
is defined on the set {1, 2, 3}; it is not reflexive if it is defined on the set {1, 2,3, 4}.

Sets, Relations and Functions 14
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Illustration 1.4

l. Let X = {1,2,3,4} and R = {(1,1),(2,1),(2,2),(3,3),(1,3),(4,4),(1,2),(3,1)}. As
(1,1),(2,2),(3,3) and (4,4) are all in R, it is reflexive. Also for each pair (a,b) € R the
pair (b, a) is also in R. So R is symmetric. As (2,1),(1,3) € R and (2,3) ¢ R, we see that R is
not transitive. Thus R is not an equivalence relation.

2. Let P denote the set of all straight lines in a plane. Let R be the relation defined on P as /{Rm if ¢
is parallel to m.

This relation is reflexive, symmetric and transitive. Thus it is an equivalence relation.

3. Let A be the set consist of parents with their children , two girls and a boy. Let R be the relation
defined by aRb if a is a sister of b.

This relation is to be looked into carefully. A woman is not a sister of herself. So it is not
reflexive. It is not symmetric also. Clearly it is not transitive. So it is not an equivalence relation.
(If we consider the same relation on the subset of females, then it becomes symmetric; even in this
case it is not transitive).

4. On the set of natural numbers let R be the relation defined by xRy if x + 2y = 21. It is better to
write the relation explicitly. The relation R is the set

{(1,10),(3,9), (5,8), (7.7),(9,6), (11,5), (13,4), (15, 3), (17, 2), (19, 1) }.

As (1,1) ¢ R itis not reflexive; as (1,10) € R and (10, 1) ¢ R itis not symmetric.
As (3,9) € R, (9,6) € Rbut (3,6) ¢ R, the relation is not transitive.
5. Let X = {1,2,3,4} and R = (), where () is the empty set.
As (1,1) ¢ R itis not reflexive. As we cannot find a pair (x,y) in R such that (y,z) ¢ R, the
relation is not ‘not symmetric’; so it is symmetric. Similarly it is transitive.
6. The universal relation is always an equivalence relation.
7. An empty relation can be considered as symmetric and transitive.
8. If a relation contains a single element, then the relation is transitive.

Let us discuss some more special relations now.

Example 1.10 Check the relation R = {(1,1),(2,2),(3,3),...,(n,n)} defined on the set
S =1{1,2,3,...,n} for the three basic relations.

Solution:
As (a,a) € Rforall a € S, R is reflexive.
There is no pair (a, b) in R such that (b,a) ¢ R. In other words, for every pair (a,b) € R, (b, a) is
also in R. Thus R is symmetric.
We cannot find two pairs (a,b) and (b, ¢) in R, such that (a,c) ¢ R. Thus the statement “R is not
transitive” is not true; therefore, the statement “F is transitive” is true; hence R is transitive.

Since R is reflexive, symmetric and transitive, this relation is an equivalence relation.

From the very beginning we have denoted all the relations by the same letter 7. It is not necessary
to do so. We may use the Greek letter p (Read as rho) to denote relations. Equivalence relations are
mostly denoted by “~”.

If a relation is not of required type, then by inserting or deleting some pairs we can make it of the

required type. We do this in the following problem.
Example 1.11 Let S = {1,2,3} and p = {(1,1),(1,2),(2,2),(1,3),(3,1)}.

(i) Is p reflexive? If not, state the reason and write the minimum set of ordered pairs to be
included to p so as to make it reflexive.
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@i1) Is p symmetric? If not, state the reason, write minimum number of ordered pairs to be
included to p so as to make it symmetric and write minimum number of ordered pairs to
be deleted from p so as to make it symmetric.

(ii1) Is p transitive? If not, state the reason, write minimum number of ordered pairs to be included
to p so as to make it transitive and write minimum number of ordered pairs to be deleted from
p so as to make it transitive.

(iv) Is p an equivalence relation? If not, write the minimum ordered pairs to be included to p so

as to make it an equivalence relation.

Solution:

(i) pis not reflexive because (3, 3) isnotin p. As (1,1) and (2, 2) are in p, it is enough to include
the pair (3, 3) to p so as to make it reflexive.
(ii) p is not symmetric because (1, 2) is in p, but (2, 1) is not in p. It is enough to include the pair
(2,1) to p so as to make it symmetric.
It is enough to remove the pair (1, 2) from p so as to make it symmetric
(iii) p is not transitive because (3, 1) and (1, 3) are in p, but (3, 3) is not in p. To make it transitive
we have to include (3, 3) in p. Even after including (3, 3), the relation is not transitive because
(3,1) and (1, 2) are in p, but (3,2) is not in p. To make it transitive we have to include (3, 2)
also in p. Now it becomes transitive. So (3, 3) and (3, 2) are to be included so as to make p
transitive.
But if we remove (3, 1) from p, then it becomes transitive.
(iv) We have seen that

e to make p reflexive, we have to include (3, 3);
e to make p symmetric, we have to include (2, 1);
e and to make p transitive, we have to include (3, 3) and (3, 2).

To make p as an equivalence relation we have to include all these pairs. So after including the
pairs the relation becomes {(1, 1), (2,2), (3,3),(1,2),(2,1),(1,3),(3,1),(3,2)}

But this relation is not symmetric because (3, 2) is in the relation and (2, 3) is not in the relation.
So we have to include (2, 3) also. Now the new relation becomes

{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(3,2),(2,3)}

It can be seen that this relation is reflexive, symmetric and transitive, and hence it is an equivalence
relation. Thus we have to include (3, 3), (2,1), (3,2) and (2, 3) to p so as to make it an equivalence
relation.

Now let us learn how to create relations having certain properties through the following example.

Example 1.12 Let A = {0, 1, 2, 3}. Construct relations on A of the following types:

(i) not reflexive, not symmetric, not transitive.

(i) not reflexive, not symmetric, transitive.
(iii) not reflexive, symmetric, not transitive.
(iv) not reflexive, symmetric, transitive.
(v) reflexive, not symmetric, not transitive.
(vi) reflexive, not symmetric, transitive.

(vii) reflexive, symmetric, not transitive.

(viii) reflexive, symmetric, transitive.

Sets, Relations and Functions 16
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Solution:

Similarly we can construct more examples.

not reflexive; it is symmetric; and it is not transitive.

is not symmetric and it is not transitive.
transitive and not symmetric.

reflexive, symmetric and not transitive.

equivalence relation.

Solution:
Asm —m = 0and 0 = 0 x 12, hence mRm proving that R is reflexive.

shows that R is symmetric.

Som — p = 12(k + ¢) and hence m Rp. This shows that R is transitive.
Thus R is an equivalence relation.

Let mRn and nRp; then m — n = 12k and n — p = 12/ for some integers k and /.

(i) Let us use the pair (1,2) to make the relation “not symmetric” and consider the relation
{(1,2)}. It is transitive. If we include (2, 3) and not include (1, 3), then the relation is not
transitive. So the relation {(1,2), (2,3)} is not reflexive, not symmetric and not transitive.

(ii) Just now we have seen that the relation {(1,2)} is transitive, not reflexive and not symmetric.
(iii) Let us start with the pair (1, 2). Since we need symmetricity, we have to include the pair (2, 1).
At this stage as (1, 1), (2, 2) are not here, the relation is not transitive. Thus {(1,2),(2,1)} is

(iv) If we include the pairs (1,1) and (2,2) to the relation discussed in (iii), it will become
transitive. Thus {(1, 2), (2,1), (1, 1), (2, 2) } is not reflexive; it is symmetric and it is transitive.

(v) For a relation on {0, 1,2, 3} to be reflexive, it must have the pairs (0,0), (1, 1), (2,2), (3, 3).
Fortunately, it becomes symmetric and transitive. Therefore, as in (i) if we insert (1,2) and
(2,3) we get the required one. Thus {(0,0), (1,1),(2,2),(3,3),(1,2),(2,3)} is reflexive; it

(vi) Proceeding like this we get the relation {(0,0), (1,1),(2,2),(3,3),(1,2)} that is reflexive,
(vii) As above we get the relation {(0,0),(1,1),(2,2),(3,3),(1,2),(2,3),(2,1),(3,2)} that is

(viii) We have the relation {(0,0), (1, 1), (2, 2), (3, 3) } which is reflexive, symmetric and transitive.

Example 1.13 In the set Z of integers, define m Rn if m — n is a multiple of 12. Prove that R is an

Let mRn. Then m — n = 12k for some integer k; thus n — m = 12(—k) and hence nRm. This

Theorem 1.1: The number of relations from a set containing m elements to a set containing n
. . . o . . 2
elements is 2", In particular the number of relations on a set containing n elements is 2" .

Proof. Let A and B be sets containing m and n elements respectively. Then A x B contains mn
elements and A x B has 2" subsets. Since every subset of A x B is a relation from A to B, there

are 2" relations from a set containing m elements to a set containing n elements.

Taking A = B, we see that the number of relations on a set containing n elements is o, |
f‘ (i) The number of reflexive relations on a set containing n elements is gn*-n
™ . . . . NN CERD!
SV (i1) The number of symmetric relations on a set containing n elements is 2™ 2
( Definition 1.5 )

If R is a relation from A to B, then the relation R~ defined from B to A by

R™'={(b,a): (a,b) € R}

\is called the inverse of the relation R.

J
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For example, if R = {(1,a), (2,0), (2,¢), (3,a)}, then
R = {<a7 1)’ (bv 2), (C’ 2>> (av 3)}

It is easy to see that the domain of R becomes the range of R~! and the range of R becomes the
domain of R~

'l

» . An equivalence relation on a set decomposes it into a disjoint union of its
~ subsets (equivalence classes). Such a decomposition is called a partition. This 1
- ow?2 is explained in the following example. "
For a,b € Z, aRb if and only if a — b = 3k, k € Z is an equivalence relation :

on Z. '

Zy = {x€Z:zR0} = {...,—6,-3,0,3,6,...} '

Zy = {x€Z:zR1} = {...,-5,-2,1,4,7,...} '

Zy = {ze€Z:zR2} = {...,—4,—-1,2,5,8 '

;

1

1

1

1

1

1

1

.

Thus Z = Zy U Z1 U Z, and all are disjoint subsets.
For a given partition S; U Sy U --- U .S,, of a set S into disjoint subsets, one
can construct an equivalence relation R on S by xRy if x,y € .S; for some .
Equivalence relation is used in almost all branches of higher mathematics.

@ Exercise - 1.2

1. Discuss the following relations for reflexivity, symmetricity and transitivity:

(i) The relation R defined on the set of all positive integers by “mRn if m divides n”.
(ii) Let P denote the set of all straight lines in a plane. The relation R defined by “/Rm if { is
perpendicular to m”.
(iii) Let A be the set consisting of all the members of a family. The relation R defined by “aRb
if a is not a sister of b”.
(iv) Let A be the set consisting of all the female members of a family. The relation R defined by
“aRb if a is not a sister of b”.
(v) On the set of natural numbers the relation R defined by “z Ry if x + 2y = 1.

2. Let X = {a,b,c,d} and R = {(a, a), (b)), (a,c)}. Write down the minimum number of ordered
pairs to be included to R to make it
(1) reflexive (i) symmetric (iii) transitive (iv) equivalence
. Let A = {a,b,c} and R = {(a,a), (b,b), (a,c)}. Write down the minimum number of ordered

pairs to be included to R to make it
(i) reflexive (i) symmetric (ii1) transitive (iv) equivalence

(98]

4. Let P be the set of all triangles in a plane and R be the relation defined on P as aRb if a is similar
to b. Prove that R is an equivalence relation.

5. On the set of natural numbers let R be the relation defined by a0 if 2a 4+ 3b = 30. Write down
the relation by listing all the pairs. Check whether it is

(i) reflexive (1) symmetric (ii1) transitive (iv) equivalence

6. Prove that the relation “friendship” is not an equivalence relation on the set of all people in
Chennai.

7. On the set of natural numbers let 1 be the relation defined by aRb if a + b < 6. Write down the

relation by listing all the pairs. Check whether it is
(1) reflexive (i1) symmetric (iii) transitive (iv) equivalence
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8. Let A = {a,b,c}. What is the equivalence relation of smallest cardinality on A? What is the
equivalence relation of largest cardinality on A?

9. In the set Z of integers, define mRn if m — n is divisible by 7. Prove that R is an equivalence
relation.

1.6 Functions

Suppose that a particle is moving in the space. We assume the physical particle as a point. As time
varies, the particle changes its position. Mathematically at any time the point occupies a position in
the three dimensional space R?. Let us assume that the time varies from 0 to 1. So the movement or
functioning of the particle decides the position of the particle at any given time ¢ between 0 and 1. In
other words, for each ¢ € [0, 1], the functioning of the particle gives a point in R?. Let us denote the
position of the particle at time ¢ as f(t).

Let us see another simple example. We know that the equation 2z —y = 0 describes a straight line.
Here whenever = assumes a value, y assumes some value accordingly. The movement or functioning
of y is decided by that of x. Let us denote y by f(x). We may see many situation like this in nature. In
the study of natural phenomena, we find that it is necessary to consider the variation of one quantity
depending on the variation of another.

The relation of the time and the position of the particle, the relation of a point in the x-axis to
a point in the y-axis and many more such relations are studied for a very long period in the name
function. Before Cantor, the term function is defined as a rule which associates a variable with another
variable. After the development of the concept of sets, a function is defined as a rule that associates
for every element in a set A, a unique element in a set B. However the terms rule and associate are
not properly defined mathematical terminologies. In modern mathematics every term we use has to
be defined properly. So a definition for function is given using relations.

Suppose that we want to discuss a test written by a set of students. We shall see this as a relation.

Let A be the set of students appeared for an examination and let B = {0, 1,2,3,...100} be the
set of possible marks. We define a relation R as follows:

A student a is related to a mark b if @ got b marks in the test.

We observe the following from this example:

e Every student got a mark. In other words, for every a € A, there is an element b € B such that
(a,b) € R.

e A student cannot get two different marks in any test. In other words, for every a € A, there
is definitely only one b € B such that (a,b) € R. This can be restated in a different way: If
(a,b),(a,c) € Rthenb = c.

Relations having the above two properties form a very important class of relations, called functions.
Let us now have a rigorous definition of a function through relations.

Definition 1.6

Let A and B be two sets. A relation f from A to B, a subset of A x B, is called a function from
Ato B if it satisfies the following:

(i) forall a € A, there is an element b € B such that (a,b) € f.
(ii) if (a,b) € fand (a,c) € f then b = c.

That is, a function is a relation in which each element in the domain is mapped to exactly one
element in the range.

A is called the domain of f and B is called the co-domain of f.If (a,b) is in f, then we write
f(a) = b; the element b is called the image of a and the element «a is called a pre-image of b and f(a)
is known as the value of f at a. The set {b : (a,b) € f for some a € A} is called the range of the
function. If B is a subset of R, then we say that the function is a real-valued function.
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Two functions f and g are said to be equal functions if their domains are same and f(a) = g(a)
for all @ in the domain.

If f is a function with domain A and co-domain B, we write f : A — B (Read this asf is from A
to B or f be a function from A to B). We also say that f maps A into B. If f(a) = b, then we say f
maps a to b or a is mapped onto b by f, and so on.

The range of a function is the collection of all elements in the co-domain which have pre-images.
Clearly the range of a function is a subset of the co-domain. Further the first condition says that every
element in the domain must have an image; this is the reason for defining the domain of a relation
R from a set A to a set B as the set of all elements of A having images and not as A. The second
condition says that an element in the domain cannot have two or more images.

Naturally one may have the following doubts:

9

o In the definition, why we use the definite article “the” for image of a and the indefinite article “a
for pre-image of b?

e We have a condition stating that every element in the domain must have an image; is there any
condition like “every element in the co-domain must have a pre-image”? If not, why?

e We have a condition stating that an element in the domain cannot have two or more images; is
there any condition like “an element in the co-domain cannot have two or more pre-images”? If
not, why?

As an element in the domain has exactly one image and an element in the co-domain can have more
than one pre-image according to the definition, we use the definite article “the” for image of a and the
indefinite article “a” for pre-image of b. There are no conditions as asked in the other two questions;
the reason behind it can be understood from the problem of students’ mark we considered above.

We observe that every function is a relation but a relation need not be a function.

Let f = {(a, 1), (b, 2), (c,2), (d, 4)}.

Is f a function? This is a function from the set {a,b,c,d} to {1,2,4}. This is not a function
from {a,b,c,d, e} to {1,2,3,4} because e has no image. This is not a function from {a, b, ¢, d} to
{1,2, 3,5} because the image of d is not in the co-domain; f is not a subset of {a, b, ¢, d} x{1,2,3,5}.
So whenever we consider a function the domain and the co-domain must be stated explicitly.

The relation discussed in Illustration 1.1 is a function with domain {L, £, T,U, S, W, I, N} and
co-domain {O, H, W, X,V, Z, L,Q}. The relation discussed in Illustration 1.3 is again a function
with domain {a, b, ..., 2z} and the co-domain {1,2,3,...,26}.

In Ilustration 1.2, we discussed three relations, namely

() y=2x (i) y=2a% (i) y>=x.
Clearly (i) and (ii) are functions whereas (iii) is not a function, if the domain and the co-domain are
R. In (iii) for the same z, we have two y values which contradict the definition of the function. But

if we split into two relations, that is, y = \/5 and y = —\/E then both become functions with same
domain non-negative real numbers and the co-domains [0, co) and (—o0, 0] respectively.

1.6.1 Ways of Representing Functions
(a) Tabular Representation of a Function
When the elements of the domain are listed like xq,29,23...x,, we can use this tabular

form.Here, the values of the arguments 1, x5, 73 . . . x,, and the corresponding values of the function
Y1, Y2, Y3 - . . Y are written out in a definite order.

T|X1 | T |...|Tp
Yl Y2 ] ---|Yn

(b) Graphical Representation of a Function

When the domain and the co-domain are subsets of IR, many functions can be represented using a
graph with x-axis representing the domain and y-axis representing the co-domain in the (x, y)-plane.
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We note that the first and second figures in Illustration 1.2 represent the functions f(z) = 2z and
f(x) = 2? respectively. Usually the variable z is treated as independent variable and y as a dependent
variable. The variable z is called the argument and f(z) is called the value.

(c) Analytical Representation of a Function

If the functional relation y = f(z) is such that f denotes an analytical expression, we say that the
function y of z is represented or defined analytically. Some examples of analytical expressions are

sinx + cosx

3
5
T + 0, 21

, logx + 5/
That is, a series of symbols denoting certain mathematical operations that are performed in a definite
sequence on numbers, letters which designate constants or variable quantities.

Examples of functions defined analytically are

(i) v

One of the usages of writing functions analytically is finding domains naturally. That is, the set
of values of x for which the analytical expressions on the right-hand side has a definite value is the
natural domain of definition of a function represented analytically.

Thus, the natural domain of the function,

_x—l
x4+

(ii) y=v9—a2 (iii) y=sinz +cosz (iv) A =7’

(i) y=a>4+3 is (—o0,00) (i) y=az*—2 is  (—o0,00)
(i) y =24 is R—{-1} (v) y=4+v4d—2% is —-2<z<2

Now recall the domain of the functions (i) y = 2, (ii) y = 22, (iii)) y = +/z, (V) y = —/T
which are analytical in nature described earlier.
Sometimes we may come across piece-wise defined functions. For example, consider the function
f R — R defined as
0 if —co<ae< =2
flz)=4¢ 2z if —-2<2x<3
22 if 3<z<oo
Depending upon the value of =, we have to select the formula to be used to find the value of f at
any point x. To find the value of f at any real number, first we have to find to which interval x belongs
to; then using the corresponding formula we can find the value of f at that point. To find f(6) we
know 3 < 6 < oo (or 6 € [3,00)); so we use the formula f(z) = 2° and find f(6) = 36. Similarly
f(—=1) = -2, f(—5) = 0 and so on.
If the function is defined from R or a subset of R then we can draw the graph of the function. For
example, if f : [0,4] — R is defined by f(x) = 5 + 1, then we can plot the points (x, 5 + 1) for all

2
x € [0,4]. Then we will get a straight line segment joining (0, 1) and (4, 3). (See Figure 1.13)

/

<

y

2
3

]
v o o

o)

/)
"""" "

Y= + 1 8
1 2 y=p2+4 :
4 -2 2%2 5 X
-1 4 X
Figure 1.13 Figure 1.14
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Consider another function f(z) = z* + 4,z > 0. The function will be given by its graph.
(See Figure 1.14)

Let x be a point in the domain. Let us draw a vertical line through the point x. Let it meet the curve
at P. The point at which the horizontal line drawn through P meets the y-axis is f(z). Similarly using
horizontal lines through a point y in the co-domain, we can find the pre-images of y.

Can we say that any curve drawn on the plane be considered as a function from a subset of R to
R? No, we cannot. There is a simple test to find this.

Vertical Line Test

As we noted earlier, the vertical line through any point = in the domain meets the curve at some point,
then the y-coordinate of the point is f(x). If the vertical line through a point = in the domain meets
the curve at more than one point, we will get more than one value for f(x) for one x. This is not
allowed in a function. Further, if the vertical line through a point x in the domain does not meet the
curve, then there will be no image for x; this is also not possible in a function. So we can say,

“if the vertical line through a point = in the domain meets the curve at more than one point or
does not meet the curve, then the curve will not represent a function”.

w e
w e

[l N w S
Lol N 3
Lol N

Figure 1.15

Figure 1.16 Figure 1.17 Figure 1.18

The curve indicated in Figure 1.15 does not represent a function from [0, 4] to R because a vertical
line meets the curve at more than one point (See Figure 1.17). The curve indicated in Figure 1.16 does
not represent a function from [0, 4] to R because a vertical line drawn through x = 2.5 in [0, 4] does
not meet the curve (See Figure 1.18).

Testing whether a given curve represents a function or not by drawing vertical lines is called
vertical line test or simply vertical test.

The third curve y? = z in Illustration 1.2 fails in the vertical line test and hence it is not a function
from R to R.

1.6.2 Some Elementary Functions
Some frequently used functions are known by names. Let us list some of them.

(i) Let X be any non-empty set. The function f : X — X defined by f(z) = z forall x € X is
called the identity function on X (See Figure 1.19). It is denoted by /x or .

X X X Y

|, | ——
|, rS

Figure 1.19 Figure 1.20
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(i) Let X and Y be two sets. Let ¢ be a fixed element of Y. The function f : X — Y defined by
f(z) = cforall z € X is called a constant function (See Figure 1.20).
The value of a constant function is same for all values of x throughout the domain.
If X and Y are R, then the graph of the identity function and a constant function are as in
Figures 1.21 and 1.22. If X is any set, then the constant function defined by f(x) = 0 for all «
is called the zero function. So zero function is a particular case of constant function.

YA yA
c y=c
=X
x x
Figure 1.21 Figure 1.22

(iii) The function f : R — R defined by f(z) = |x|, where |z| is the modulus or absolute value of
x, is called the modulus function or absolute value function. (See Figure 1.23.)
Let us recall that |z| is defined as

—v i <0 g if 2<0 g if 2<0
lz| = 0 if z=0 orlz|= . or x| = : N
v i 20 z if x>0 z if >0

=_ 4 y=x A
x =0 x -3 - -1 . ;c
Figure 1.23 Figure 1.24
. . Loif x#0 . . .
(iv) The function f : R — R defined by f(z) = |x(|] i orep called the signum function.

This function is denoted by sgn. (See Figure 1.24)
(v) The function f : R — R defined by f(z) is the greatest integer less than or equal to x is called

the integral part function or the greatest integer function or the floor function. This function is
denoted by |x]. (See Figure 1.25.)

(vi) The function f : R — Rdefined by f(x) is the smallest integer greater than or equal to z is
called the smallest integer function or the ceil function (See Figure 1.26.). This function is
denoted by [-]; thatis f(z) is denoted by [x].

The functions (v) and (vi) are also called step functions.

Let us note that |11 ] = 1,[7.23] =7, [—23] = —3 (not —2), 6] = 6 and |—4] = —4.
Let us note that [11] = 2, [7.23] =8, [-25] = —2 (not —3), [6] = 6 and [—4] = —4.

23
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1 T
—_—
x X
Figure 1.25 Figure 1.26

One may note that the relations among the names of these functions, the symbols denoting the
functions are the commonly used words ceiling and floor of a room. Their graphs are given in Figures
1.25 and 1.26.

1.6.3 Types of Functions

Though functions can be classified into various types according to the need, we are going to
concentrate on two basic types: one-to-one functions and onto functions.

e > X
b Y
C

Figure 1.27 Figure 1.28 Figure 1.29

Let us look at the two simple functions given in Figure 1.27 and Figure 1.28. In the first
function two elements of the domain, b and ¢, are mapped into the same element y, whereas
it is not the case in the Figure 1.28. Functions like the second one are examples of one-to-one
functions.

Let us look at the two functions given in Figures 1.28 and 1.29. In Figure 1.28 the element z in the
co-domain has no pre-image, whereas it is not the case in Figure 1.29. Functions like in Figure 1.29
are examples of onto functions. Now we define one-to-one and onto functions.

Definition 1.7

A function f : A — B is said to be one-to-one if v,y € A,z # y = f(zx) # f(y) [or
equivalently f(x) = f(y) = x = y]. A function f : A — B is said to be onto, if for each b € B
there exists at least one element a € A such that f(a) = b. That is, the range of f is B.

Another name for one-to-one function is injective function; onto function is surjective function. A
function f : A — B is said to be bijective if it is both one-to-one and onto.
To prove a function f : A — B to be one-to-one, it is enough to prove any one of the following:

if x # y, then f(x) # f(y), or equivalently if f(z) = f(y), then z = y.
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It is easy to observe that every identity function is one-to-one function as well as onto. A constant
function is not onto unless the co-domain contains only one element. The following statements are
some important simple results.

Let A and B be two sets with m and n elements.

(i) There is no one-to-one function from A to B if m > n.
(i1) If there is an one-to-one function from A to B, then m < n.
(iii) There is no onto function from A to B if m < n.
(iv) If there is an onto function from A to B, then m > n.
(v) There is a bijection from A to B, if and only if, m = n.
(vi) There is no bijection from A to B if and only if, m # n.

Q A function which is not onto is called an into function. That is, the range of the function
is a proper subset of its co-domain. Let us see some illustrations.
(1) X ={1,2,3,4},Y = {a,b,¢,d,e}and f = {(1,a),(2,¢),(3,¢),(4,0) }.
This function is one-to-one but not onto.
(2) X ={1,2,3,4},Y = {a,b} and f = {(1, ), (2.0), (3,0), (4.0)}.
This function is not one-to-one; it is not onto.
(3) X = {]—7 27 37 4}7 Y = {(I} and f = {<17 a)? (27 a)v (3’ (l), (47 a)}

This function is not one-to-one but it is onto. It seems that this function is same
as the previous one. The co-domain of the function is very important when deciding
whether the function is onto or not.

4) X ={1,2,3,4},Y = {a,b,¢,d, e} and f = {(1,a), (2,¢), (3,0), (4,0) }.

This function is neither one-to-one nor onto.

5 X = {L 2,3, 4}a Y = {CL, b, c, d} and f = {(17 CL), (27 C)a (37 d)7 (47 b)}

This function is both one-to-one and onto.

(6) X = {17 27 37 4}7 Y = {CL, ba ) da 6} and f = {(17 CL), (27 C)) (37 6)}

This is not at all a function, only a relation.

(7) Let X be a finite set with k elements. Then, we have a bijection from X to
{1,2,...k}.

Let us consider functions defined on some known sets through a formula rule.

Example 1.14 Check whether the following functions are one-to-one and onto.

(i) f:N — Ndefined by f(n) =n + 2.
(i) f:NU{-1,0} — Ndefined by f(n) =n+ 2.

Solution:

(i) If f(n) = f(m), then n + 2 = m + 2 and hence m = n. Thus f is one-to-one. As 1 has no
pre-image, this function is not onto. (See Figure 1.30)
(i1) As above, this function is one-to-one. If m is in the co-domain, then m — 2 is in the domain

and f(m — 2) = (m — 2) + 2 = m; thus m has a pre-image and hence this function is onto.
(See Figure 1.31)
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N N NU {~1,0} N

Figure 1.30 Figure 1.31

It seems that the second function (ii) is same as the first function (i). But the domains are
different. From this we see that the domain of the function is also important in deciding
whether the function is onto or not. The co-domain has no role in deciding whether the
function is one-to-one or not. But it is important to decide whether the function is onto
or not.

Example 1.15 Check the following functions for one-to-oneness and ontoness.

() f:N — Ndefined by f(n) = n®.
(i) f:R — Rdefined by f(n) = n’.
Solution:
(i) f(m)= f(n) = m?=n*= m = nsince m,n € N. Thus f is one-to-one. But, non-perfect
square elements in the co-domain do not have pre-images and hence not onto.

(i) Two different elements in the domain have same images and hence f is not one-to-one.
Clearly the range of f is a proper subset of R. Thus it is not onto.

Now, we recall Illustration 1.1. In this illustration the function f : C' — D is defined by
fL)=0,f(E)=H f(T)=W,f(U)=X,f(S) =V, f(W)=Z,f(I) =L, f(N) =Q

where C' = {L, E,T,U,S,W,I,N} and D = {O, H, W, X,V, Z, L,Q}, is an one-to-one and onto
function.

In Hlustration 1.3, the function f : A — N is defined by f(a) = 1, f(b) = 2,..., f(2) = 26,
where A = {a,b,...z}. This function is one-to-one. If we take N as co-domain, the function is not
onto. Instead of N if we take the co-domain as {1,2,3...,26} then it becomes onto.

Example 1.16 Check whether the following for one-to-oneness and ontoness.

(i) f:R — R defined by f(z) = l

8

(ii)) f:R—{0} — R defined by f(x) = l
T
Solution:

(i) This is not at all a function because f(z) is not defined for = = 0.
(i1) This function is one-to-one (verify) but not onto because 0 has no pre-image.

El“j If we consider R — {0} as the co-domain for the second, then f will become a bijection.
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Example 1.17 If f : R — {—1,1} — Riis defined by f(x) = —"5, verify whether f is one-to-one
or not.

Solution:
We start with the assumption f(z) = f(y). Then,

— Y

= ”
= (y? —=1) = y
= -z —yr*+y = 0
= (y—x)(zy+1) = 0

This implies that x = y or xy = —1. So if we select two numbers x and y so that xy = —1, then
f(@) = f(y). (2,—3),(7,—1),(—2, 5) are some among the infinitely many possible pairs. Thus
f@2)=f(3) = That is, f (x) ( ) does not imply = = y. Hence it is not one-to-one.

Example 1.18 If f : R — R is defined as f(x) = 22® — 1, find the pre-images of 17,4 and —2.

Solution:
To find the pre-image of 17, we solve the equation 22? — 1 = 17. The two solutions of this equation,

3 and —3 are the pre-images of 17 under f. The equation 22> — 1 = 4 yields \/g and —\/g as the

two pre-images of 4. To find the pre-image of —2, we solve the equation 222 — 1 = —2. This shows
that 22 = —% which has no solution in R because square of a number cannot be negative and hence
—2 has no pre-image under f.

Example 1.19 If f : [-2,2] — B is given by f(z) = 223, then find B so that f is onto.

Solution:
The minimum value is f(—2) and its maximum value is f(2) which are equal to —16 and 16
respectively. So B is [—16, 16].

As f(x) = 223 is an increasing function on [—2, 2], the minimum value is attained at the
R left end and the maximum value is attained at the right end. (For more about increasing
/ decreasing functions one may refer later chapters.)

Example 1.20 Check whether the function f(z) = z|z| defined on [—2, 2] is one-to-one or not. If
it is one-to-one, find a suitable co-domain so that the function becomes a bijection.

Solution:
Let z,y € [—2,2] such that f(z) = f(y). If y = 0, then x = 0. So let y # 0 and hence = # 0. Now
z|z| = yly| since f(x) = f(y). This implies that § = BI\ Since ‘|y| > 0,7 > 0; thus z and y are
either both positive or both negative and hence 2 = /2.

So if f(z) = f(y), we must have 2> = y2. Also x and y are either both negative or both
positive. This is possible only if = y. Thus f is one-to-one. When z < 0, f(z) = —z% and when

x>0, f(z) = 2*. So the range is [—4, 4]. So f becomes a bijection from [—2, 2] to [—4, 4].
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Q) f(z) = z|x| is also an increasing function.

Horizontal Test

Similar to the vertical line test we have a test called horizontal test to check whether a function is
one-to-one, onto or not. Let a function be given as a curve in the plane. If the horizontal line through
a point y in the co-domain meets the curve at some points, then the z-coordinate of all the points give
pre-images for y.

y ¥
3 3

2 2

1 2 3 4 x 1 2 3 4 X 1 2 3 3 X

Figure 1.32 Figure 1.33 Figure 1.34

(i) If the horizontal line through a point y in the co-domain does not meet the curve, then there will
be no pre-image for y and hence the function is not onto.
(i1) If the horizontal line through atleast one point of the codomain meets the curve at more than
one point, then the function is not one-to-one.
(ii1) If for all ¢ in the range the horizontal line through y meets the curve at only one point, then the
function is one-to-one.

So we may say, the function represented by a curve is one-to-one if and only if for all y in the
range, the horizontal line through the point y meets the curve at exactly one point.

The function represented by a curve is onto if and only if for all y in the co-domain, the horizontal
line through the point y meets the curve atleast one point.

The curve given in Figure 1.32 represents a function from [0, 4] which is not onto if the co-domain
contains [1, 3]. The curve given in Figure 1.33 represents a one-to-one function from [0, 4] to R and
the curve given in Figure 1.34 represents a function from [0, 4] to R which is not one-to-one.

Testing whether a given curve represents a one-to-one function, onto function or not by drawing
horizontal lines is called horizontal line test or simply horizontal test.

Further by seeing the diagrams in Illustration 1.2 and Figures 1.5 to Figure 1.7, the function

(i) f:R — R defined by f(x) = 2z is an one-to-one and onto function.
(i) f:R — Rdefined by f(z) = 2? is neither one-to-one nor onto.
(iii) f:[0,00) — R defined by f(x) = ++/z is an one-to-one but not onto function.

(iv) f:[0,00) — [0,00) defined by f(x) = ++/x is an one-to-one and onto function.
(v) f:]0,00) — R defined by f(z) = —+/x is one-to-one but not onto function.
(vi) f:]0,00) = (—00,0] defined by f(z) = —/x is one-to-one and onto function.

Example 1.21 Find the largest possible domain for the real valued function f defined by

f(z) = Vz? — 5z + 6.

Solution:

As we are finding the square root of 2% — 5z + 6, we must

have 22 —5x+6 > 0 for all x in the domain. For this, follow _Oo‘ ) 3 ’w
the given procedure.

Solving 22 — 52 +6 = 0, we get # = 2 and 3. Now draw Figure 1.35
the number line as in Figure 1.35.
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Now we have three intervals. (—o0, 2), (2, 3) and (3, o00)

(i) Take any point in (—o00,2), say = 1. Clearly 2? — 5z + 6 is positive.
(i) Take any pointin (2,3), say x = 2.5. Clearly 22 — 5x + 6 is negative.
(iii) Take any point in (3, 00), say x = 4. Clearly 22 — 5x + 6 is positive.

For all z, in the intervals (—o0,2) and (3, 00), z? — 5z + 6 is positive. At z = 2,3 the value of
x? — 5z + 6 is zero. Thus, v/22 — 5x + 6 is defined for all z in (—o0, 2] U [3, 00).
Hence the domain of vz — 5z + 6 is (—o0, 2] U [3, 00).

Example 1.22 Find the domain of f(7) = —

1—2cosz"
Solution:
The function is defined for all z € R except 1 — 2cosx = 0. That is, except cosx = % That is
except = 2nm &+ %, n € Z. Hence the domainis R — {2n7 £}, n € Z

Example 1.23 Find the range of the function f(z) = —*

1-3cosz"
Solution:
Clearly,
—1 < cosx < 1
= 3 > —3cosx > =3
= -3 < —3cosz < 3
= 1—-3 < 1—3cosx < 1+3

Thus we get —2 < 1 —3coszand 1 — 3cosz < 4.
By taking reciprocals, we get 7—— < —7 and ;— >
Hence the range of f is (—oo, —3] U [1, 00).

AT

9—x2

Example 1.24 Find the largest possible domain for the real valued function given by f(x) = N

Solution:
If < —3 or z > 3, then 2 will be greater than 9 and hence 9 — z? will become negative which
has no square root in R. So x must lie on the interval [—3, 3].

Also if + > —1 and 2 < 1, then 2% — 1 will become negative or zero. If it is negative, 2% — 1
has no square root in R. If it is zero, f is not defined. So = must lie outside [—1, 1]. That is, x must
lie on (—oo, —1) U (1, 00). Combining these two conditions, the largest possible domain forf is
[—3,3] N ((—o0, —1) U (1,00)). That is, [-3,—1) U (1, 3].

El“j Draw the number line and plot the intervals to get the required domain interval.

1.6.4 Operations on Functions
Composition
Let there be two functions f and g as given in the Figure 1.36 and Figure 1.37. Let us note that the

co-domain of f and the domain of g are the same. Let us cut off Figure 1.37 of ¢ and paste it on the
Figure 1.36 of f so that the domain Y of ¢ is pasted on co-domain Y of f. (See Figure 1.38.)
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X Y Y Z
f
8
I~
> Z
Figure 1.36 Figure 1.37

Figure 1.38

Now we can define a function » : X — Z in a natural way. To find the image of a under h, we
first see the image of a under f; it is z; then we see the image of this x under g; this is r. That is,
h(a) = r. Similarly, we declare h(b) = g and h(c) = q¢. In this way we can define a new function h.
This A is called the composition of f with g.

Definition 1.8

Let f: X — Yandg:Y — Z be two functions. Then the function h : X — Z defined as
h(z) = g(f(x)) for every x € X is called the composition of f with g. It is denoted by g o f
(Read this as f composite with g). (See Figures 1.38 and 1.39.)

g > 8&(fix)
5

fix)
A

x—>» f

Figure 1.39

We can note that the range of f neednotbe Y. If f : X — Yi,9: Y, — Z and Y] C Y5, then
also we can define g o f; we can take Y5 as the co-domain of f and use the same definition. So we can
define g o f if and only if the range of f is contained in the domain of g.

Example 1.25 Let f = {(1,2),(3,4),(2,2)} and g = {(2,1),(3,1),(4,2)}. Findgo f and f o g.

Solution:

To check whether compositions can be defined, let us find the domain and range of these functions.
Domain of f = {1,2,3}, Range of f = {2,4}, Domain of ¢ = {2,3,4} and Range of g =

{1,2}. Since the range of f is contained in the domain of g we can define g o f; so as to find the

image of 1 under g o f, we first find the image of 1 under f and then its image under g. The image

of 1 under f is 2 and its image under g is 1. So (g o f)(1) = g(f(1)) = g(2) = L.
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Similarly we find that (g o f)(2) = 1 and (go f)(3) = 2. Sogo f = {(1,1),(2,1),(3,2)}.
Similarly f o g = {(2,2),(3,2), (4,2)}.

Example 1.26 Let f = {(1,4),(2,5),(3,5)} and g = {(4,1),(5,2),(6,4)}. Find g o f. Can you
find f o g?

Solution:
Clearly, go f = {(1,1),(2,2),(3,2)}. But f o g is not defined because the range of g = {1,2,4} is
not contained in the domain of f = {1, 2, 3}.

Example 1.27 Let f and g be the two functions from R to R defined by f(z) = 3z — 4 and
g(x) =22+ 3.Findgo fand f o g.

Solution:

We have,

(g0 f)(x) =g(f(z))
(fog)(z) = flg(z))

g3z —4) = 3z — 4)% + 3 =922 — 242 + 19.
f(z?+3)=3(z*+3) —4=32%+5.

R Here we have fog # go f. Thus the operation “composition of functions” is in general
not commutative.

Theorem 1.2: Let f: A — Bandg: B — C be two functions. If f and g are one-to-one, then g o f
is one-to-one.

Proof. Letx # yin A. Since f is one-to-one, f(x) # f(y). Since g is one-to-one, g(f(x)) # g(f(v)).
Thatis, z £y = (go f)(z) # (f o g)(y). Hence g o f is one-to-one. [ |

Example 1.28 Show that the statement,

“if f and g o f are one-to-one, then ¢ is one-to-one” is not true.

Solution:
To claim a statement is not true we have to prove by giving one counter example. Consider the
diagram given in Figure 1.40.

Figure 1.40

Clearly f and g o f are one-to-one. But g is not one-to-one. Thus from the above diagram it
shows that the statement is not true.
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1.6.5 Inverse of a Function

Example 1.29 Let f, g : R — R be defined as f(z) = 2z — |z| and g(z) = 2z + |z|. Find f o g.
Solution:
We know
o= —x if <0
- z if x>0
So
2z —(—2x) if <0
f(x)_{ 2 —x if x>0
Thus
3z if <0
f(””)—{ v 2>0
Also
(z) = 2e+ (—z) if <0
g\ = 2r+x if x>0
Thus
) = z if <0
I = 32 if >0
Let x < 0. Then
(fog)(z) = f(9(x)) = f(z) = 3.
The last equality is taken because 3z < () whenever z < 0.
Let z > 0. Then
(fog)(z) = f(g9(x)) = f(3z) = 3.
Thus (f o g)(x) = 3z for all z.

Let there be a bijection f : X — Y as given in the Figure 1.41.

Figure 1.41

If we look this function in a mirror, we get a function from Y to X. Let us call that function as g.
Then g is a function from Y to X defined by g(z) = b, g(y) = ¢, g(2) = a.
This function g is an example for the inverse of f. Now we define the inverse of a function.
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Definition 1.9

Let f : X — Y be a bijection. The function g : Y — X defined by g(y) = z if f(z) = v, is
called the inverse of f and is denoted by 1.

If a function f has an inverse, then we say that f is invertible. There is a nice relationship between
composition of functions and inverse.

Let f : X — Y beabijectionand g : Y — X beits inverse. Then go f = Iy and fog = Iy where
Ix and [y are identity functions on X and Y respectively. Moreover, if f : X — Y andg:Y — X
are functions such that go f = Ix and f o g = Iy, then both f and ¢ are bijections and they are
inverses to each other; thatis f~! = gand ¢! = f.

Using the discussions above, the terms invertible and inverse can be defined in some other way as

follows:

Definition 1.10

A function f : X — Y is said to be invertible if there exists a function g : Y — X such that
go f=1Ixand f og= Iy where [y and Iy are identity functions on X and Y respectively. In
this case, g is called the inverse of f and g is denoted by f~*.

We may use this concept to prove some functions are bijective.

If f is a bijection, then f~!(y) is nothing but the pre-image of y under f. Let us note that the
inverses are defined only for bijections. If f is not one-to-one , then there exists a and b such that
a # band f(a) = f(b). Let this value be y. Then we cannot define f~'(y) because both a and b are
pre-images of y under f, as f~! cannot assume two different values for y. If f is not onto, then there
will be a y in Y without a pre-image. In this case also we cannot assign any value to f~*(y).

For example, if A = {1,2,3,4} and f = {(1,2),(2,4),(3,1),(4,3)}. Then the range of f is
{1,2,3,4}; the inverse of fis {(1,3),(2,1),(3,4),(4,2)}.

Working Rule to Find the Inverse of Functions from R to R:

Let f : R — R be the given function.
i. writey = f(x);
ii. write z in terms of v;
iii. write f~1(y) = the expression in y.
iv. replace y as x.

Example 1.30 If f : R — R is defined by f(z) = 2z — 3 prove that f is a bijection and find its
inverse.

Solution:
Method 1:

One-to-one : Let f(z) = f(y). Then 2o —3 = 2y — 3; this implies that x = y. That is, f(z) = f(y)
implies that + = y. Thus f is one-to-one.

Onto : Lety € R. Let z = %2, Then f(z) = 2(%22) — 3 = y. Thus f is onto. This also can
be proved by saying the following statement. The range of f is R (how?) which is equal to the

co-domain and hence f is onto.

3
Inverse Let y = 2x — 3. Then y + 3 = 2z and hence z = % Thus f~*(y)

3
replacing y as x, we get f~(z) = ‘ —2|_ :

_ y+3

B
2 y
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Method 2: 3 5
Lety = 2z — 3. Then z = yro Let g(y) = yro
Now 2 2
(90 1)(&) = 9(/(@)) = g(20 —3) = LD HI _ .
+3 y+3
(Foa)w = fla) =1 (15°) =2(152) =3 =y

Thus,go f = Ix andf o g = Iy
This implies that f and ¢ are bijections and inverses t% each other. Hence f is a bijection and
T+

3
Yy = % Replacing y by x we get, f~(z) = 7

1.6.6 Algebra of Functions

A function whose co-domain is R or a subset of R is called a real valued function. We can discuss
many more operations on functions if it is real valued.

Let f and g be two real valued functions. Can we define addition of f and ¢? Naturally we expect
the sum of two functions to be a function. The value of f + ¢ at a point x should be related to the
values of f and g at . So to define f + ¢ at a point x, we must know both f(x) and g(x). In other
words x must be in the domain of f as well as in the domain of ¢g. And the natural way of defining
f+gatxis f(x)+ g(z). So if we impose a condition that the domains of f and g to be the same,
then we can define f + ¢. In the same way we can define subtraction, multiplication and many more
algebraic operations available on the set R of the real numbers.

( Definition 1.11 )
Let X be any set. Let f and g be real valued functions defined on X. Define, for all z € X

o (f+9)(x)=f(z)+g(x)

(f = 9)(@) = f(z) — g(z).
(f9)(x) = f(z)g(x).

° (5) (x) = 1@) " where g(x) # 0.

)
\_* D@ = /(@) y

Note that the domain may be any set, not necessarily a set of numbers. For example if X is a set of
students of a class, f and ¢ functions representing the marks obtained by the students in two tests,
then the function f 4 ¢ represent the total marks of the students in the two tests. It is easy to see that
the operations addition, subtraction, multiplication and division defined above satisfy the following
properties.

o (f+g)+h=[f+(g+h)

o f+yg=9g+/

e 0+ f = f+ 0, where O is the zero function defined by 0(x) = 0 for all .
e [+ (=f)=(=/)+f=0

e flg+h)=fg+ [h

o (¢1 +c2)f =1 f + cof where ¢ and ¢, are real constants.

We can list many more properties of these operations. The proofs are simple; however let us prove
only one to show a way in which these properties can be proved.

Let us prove f(g + h) = fg + fh. To prove f(g + h) = fg + fh we have to prove that
(f(g+h))(z) = (fg+ fh)(z) for all z in the domain.
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Theorem 1.3: If f and g are real-valued functions, then f(g + h) = fg + fh.
Proof. Let X be any set and f and g be real-valued functions defined on X. Let z € X.

(flg+h)(z) = f(x)(g+h)(x) (by the definition of product)
= f(2)g(x) + h(z)] (by the definition of addition)
= f(x)g(x) + f(z)h(z) (by the distributivity of reals)
= (fg)(x)+ (fh)(x) (by the definition of product)
= (fg+ fh)(x) (by the definition of addition)
Thus (f(g+ h))(x) = (fg + fh)(x) forall x € X; hence f(g+ h) = fg+ fh. H

1.6.7 Some Special Functions

Now let us see some special functions.
(i) The function f : R — R defined by

f(@) = apz”™ + ™" + asa" 4 .+ ap_yz + a,, [W]

where a; are constants, is called a polynomial function. Since the right hand side of the equality
defining the function is a polynomial, this function is called a polynomial function.

(ii) The function f : R — R defined by f(x) = ax + b where a # 0 and b are constants, is called a
linear function. A function which is not linear is called a non-linear function.

Clearly a linear function is a polynomial function. The graph of this function is a straight
line; a straight line is called a linear curve; so this function is called a linear function. (one may
come across different definitions for linear functions in higher study of mathematics.)

(iii) Let a be a non-negative constant. Consider the function f : R — R defined by f(z) = a”.
If a = 0,2 # 0 then the function becomes the zero function and if @ = 1, then function
f : R — R defined by f(z) = a” is the constant function f(z) = 1. [See, Figures 1.42 and

1.43].
iy 1 \r
N ol G
3 2 - X —3_:—/—1. ) i\ X
Figure 1.42 Figure 1.43

When a > 1, the function f(x) = a” is called an exponential function. Moreover, any
function having z in the “power” is called as an exponential function.

ElQ e 1s a special irrational number lies between 2 and 3. We will study more about e
in the subsequent chapters.

(iv) Let a > 1 be a constant. The function f : (0,00) — R defined by f(x) = log, = is called a
logarithmic function. In fact, the inverse of an exponential function f(z) = a” on a suitable
domain is called a logarithmic function. [See F1§ure 1.44].

(v) The real valued function f defined by f(x “) on a suitable domain, where p(z) and ¢(z)
are polynomials, ¢(z) # 0, is called a ratwnal functzon. In fact, the domain of this function is
the set obtained from R by removing the real numbers at which ¢(z) = 0.
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log,x

log x

/ log3x

i

(vi) If f is a real valued function such that f(z) # 0, then the real valued function g defined by
g(x) = ﬁ on a suitable domain is called the reciprocal function of f. The domain of g is the
set obtained from R by removing the real numbers at which f(z) = 0. For example, the largest
possible domain of f(z) = =5 is R — {1}

Let us see two more categories of functions.

Figure 1.44

Definition 1.12

A function f : R — R is said to be an odd function if f(—x) = — f(x) for all z € R. It is said
to be an even function if f(—x) = f(x) for all x € R. [See, Figures 1.45 and 1.46].

y

N AN
VAANRVARVA

Figure 1.45 Figure 1.46

The function defined by f(x) = z, f(z) = 2z and f(z) = x® + 2x are some examples for odd
functions. The functions defined by f(z) = 22, f(z) = 3, f(z) = 2* + 2? and f(z) = |z| are some
examples for even functions. Note that the function f(z) = x + 22 is neither even nor odd.

We can prove the following results.

(1) The sum of two odd functions is an odd function.
(i1) The sum of two even functions is an even function
(iii) The product of two odd functions is an even function.
(iv) The product of two even functions is an even function.
(v) The product of an odd function and an even function is an odd function.
(vi) The only function which is both odd and even function is the zero function.
(vii) The product of a positive constant and an even function is an even function.
(viii) The product of a negative constant and an even function is also an even function.
(ix) The product of a constant and an odd function is an odd function.
(x) There are functions which are neither odd nor even.

Let us prove one of the above properties. The other properties can be proved similarly.
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Theorem 1.4: The product of an odd function and an even function is an odd function.

Proof. Let f be an odd function and g be an even function. Let h = fg. Now
h(—z) = (fg9)(=z) = f(=2)g(—x) = —f(x)g(x) (as f is odd and g is even)

= —h(z)
Thus A is an odd function. This shows that fg is an odd function. |
R If one function is not odd then don’t think that the function is an even function. There

10.

. Find the largest possible domain of the real valued function f(z) =

. Find the range of the function

are plenty of functions which are neither even nor odd.

@ Exercise - 1.3

. Suppose that 120 students are studying in 4 sections of eleventh standard in a school. Let A denote

the set of students and B denote the set of the sections. Define a relation from A to B as “x related
to y if the student x belongs to the section y”. Is this relation a function? What can you say about
the inverse relation? Explain your answer.

Write the values of f at —4,1,—2,7,0 if

—r+4 if —co<xr <=3
r+4 if —3<z< -2

flz)y=¢ 22 —x if —2<z<1
r—x2 ifl<ax<7
0 otherwise

. Write the values of f at —3,5,2, —1,0 if

?+x—-5 ifz e (—o00,0)

22 +3x -2 ifxe(3,00)
Fa) =9 22 if z € (0,2)

r?—3 otherwise

State whether the following relations are functions or not. If it is a function check for one-to-
oneness and ontoness. If it is not a function, state why?

(i) If A ={a,b,c} and f ={(a,c), (b,c), (c,b)}; (f : A= A).
(i) If X = {[L’,y,Z} and f = {<xay>7 ($72>7 (2727)}; (f X = X)
Let A= {1,2,3,4} and B = {a,b,c,d}. Give a function from A — B for each of the following:

(i) neither one-to-one nor onto. (i) not one-to-one but onto.
(iii) one-to-one but not onto. (iv) one-to-one and onto.

1
Find the domain of —.
—2sinx

V4 — 22

22—9

cosr —1°

Show that the relation 2y = —2 is a function for a suitable domain. Find the domain and the range
of the function.
If f,g: R — Raredefined by f(z) = |z|+ x and g(z) = |z| — z,find go fand f o g.
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11. If f, g, h are real valued functions defined on R, then prove that (f + g) o h = foh+ go h. What
can you say about f o (g + h)? Justify your answer.

12. Iff : R — Ris defined by f(z) = 3z — 5, prove that f is a bijection and find its inverse.

13. The weight of the muscles of a man is a function of his body weight z and can be expressed as
W (z) = 0.35x. Determine the domain of this function.

14. The distance of an object falling is a function of time ¢ and can be expressed as s(t) = —16¢°.
Graph the function and determine if it is one-to-one.

15. The total cost of airfare on a given route is comprised of the base cost C' and the fuel surcharge S
in rupee. Both C' and S are functions of the mileage m; C'(m) = 0.4m + 50 and S(m) = 0.03m.
Determine a function for the total cost of a ticket in terms of the mileage and find the airfare for
flying 1600 miles.

16. A salesperson whose annual earnings can be represented by the function A(z) = 30,000+ 0.04x,
where z is the rupee value of the merchandise he sells. His son is also in sales and his earnings
are represented by the function S(z) = 25,000 + 0.05z. Find (A + 5)(z) and determine the total
family income if they each sell Rupees 1, 50, 00, 000 worth of merchandise.

17. The function for exchanging American dollars for Singapore Dollar on a given day is f(x) =
1.23z, where x represents the number of American dollars. On the same day the function for
exchanging Singapore Dollar to Indian Rupee is g(y) = 50.50y, where y represents the number
of Singapore dollars. Write a function which will give the exchange rate of American dollars in
terms of Indian rupee.

18. The owner of a small restaurant can prepare a particular meal at a cost of Rupees 100. He estimates
that if the menu price of the meal is x rupees, then the number of customers who will order that
meal at that price in an evening is given by the function D(x) = 200 — x. Express his day revenue,

total cost and profit on this meal as functions of z.

. . . : br 160 _.
19. The formula for converting from Fahrenheit to Celsius temperatures is y = 9 o Find the
inverse of this function and determine whether the inverse is also a function.

20. A simple cipher takes a number and codes it, using the function f(z) = 3z — 4. Find the inverse of
this function, determine whether the inverse is also a function and verify the symmetrical property
about the line y = x (by drawing the lines).

1.7 Graphing Functions using Transformations

“A picture is worth a thousand words” is a well known proverb. To know about a function well, its
graph will help us more than its analytical expression. To draw graphs quickly without plotting many
points is an invaluable skill. Familiarity with shapes of some basic functions will help to graph other
complicated functions. Understanding and usage of symmetry and transformations will then enable to
strengthen graphing abilities. This section is not simply a data base of graphs, we learn some methods
to graph certain functions.

Suppose that we want to draw or sketch the curve of the function y = 2sin(xz — 1) + 3. At the very
first sight it looks that it is very difficult to draw the curve representing this function. But it will be
very easy to draw after understanding the content of this section.

If we know a half of a graph is the mirror image of the other half with respective to a line, or a
graph can be obtained just by moving a known graph in some direction, then we can draw the new one
using the known one. Moreover if we know that a graph can be obtained by enlarging or shrinking a
known one, then also we can draw the new one using the known ones.

The following type of transformations play very important roles in graphing.

(1) Reflection
(i1) Translation
(i11) Dilations.
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In the case of reflections and translations, they produce graphs congruent to the original graph; that
is, the size and the shape of the graph does not change, but in dilation, it produce graphs with shapes
related to those of the original graph.

Reflection

The reflection of the graph of a function with respect to a line ¢ is the graph that is symmetric to
it with respect to /. A reflection is the mirror image of the graph where line ¢ is the mirror of the
reflection. (See Figure 1.47.)

Figure 1.47

Here f’ is the mirror image of f with respect to ¢. Every point of f has a corresponding image in
1. Some useful reflections of y = f(x) are

(i) The graph y = — f(z) is the reflection of the graph of f about the z-axis.
(ii) The graph y = f(—x) is the reflection of the graph of f about the y-axis.
(iii) The graph of y = f~!(xz) is the reflection of the graph of f in y = .

Illustration 1.5 Consider the functions:

(i) y=2a" (i) y=—a”.

Figure 1.48

For the curve f(z) = 22, — f(z) = —2°. Hence, y = —x? is the reflection of y = 22 about z-axis.
(See Figure 1.48.)

Illustration 1.6 Consider the positive branches of

vy =z andy® = —u.
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1
\£

Figure 1.49

For the curve f(z) = \/x, we have f(—x) = /—x and hence f(—z) = /—x where x < 0, is the
reflection of f(x) = \/x about y-axis. (See Figure 1.49.)

Illustration 1.7 Consider the functions:

)y =e¢€" (i)y = log, .

Figure 1.50

We know that, y = e” is the inverse function of y = log, x and hence y = € is the reflection of
y = log, x about y = x. (See Figure 1.50.)

Translation
A translation of a graph is a vertical or horizontal shift of the graph that produces congruent graphs.

x+c),c>0 causes the shift to the left.

y=f(
Th hof V= f(x —c),c>0 causes the shift to the right.
© PR o y= f(x)+d,d >0 causes the shift to the upward.

y= f(x) —d,d >0 causes the shift to the downward.

IMustration 1.8 Consider the functions:

() f(x) = [a] (i) f(x) = |z — 1] GiD) f(z) = [z + 1]

=y

-1 1

Figure 1.51
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f(z) = |x — 1] causes the graph of the function f(z) = |z| shifts to the right for one unit.

f(x) = |z + 1] causes the graph of the function f(z) = |z| shifts to the left for one unit.
(See Figure 1.51.)

Illustration 1.9 Consider the functions:

() f(2) =[] (i) f(2) = |2] = 1 Gii) f(2) = |2] + 1

V= |x|-1

iy

Figure 1.52

f(z) = |x| — 1 causes the graph of the functionf(x) = |x| shifts to the downward for one unit.

f(x) = |z| + 1 causes the graph of the function f(z) = |z| shifts to the upward for one unit.
(See Figure 1.52.)

Dilation

Dilation is also a transformation which causes the curve stretches (expands) or compresses (con-

tracts). Multiplying a function by a positive constant vertically stretches or compresses its graph; that
is, the graph moves away from x-axis or towards x-axis.

If the positive constant is greater than one, the graph moves away from the x-axis. If the positive
constant is less than one, the graph moves towards the z-axis.

INustration 1.10 Consider the functions:

(i) f(z) = 22 (i) f(z) = 22 (iii) f(z) = 222

Figure 1.53

f(x) = 347 causes the graph of the function f(z) = x? stretches towards the z-axis since the

multiplying factor is 1 which is less than one.
f(x) = 2x* causes the graph of the function f(z) = z? compresses towards the y— axis

that is, moves away from the r—axis since the multiplying factor is 2 which is greater than one.
(See Figure 1.53.)
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Illustration 1.11 Consider the functions:

() flz) =22 Gi) f(z)=22+1 (i) f(z) = (z+1)2

/
L~
=

\.*\\”’

/
yExi4 1

/

NG

1

-1 o] X

Figure 1.54

f(x) = z* + 1 causes the graph of the function f(x) = z? shifts to the upward for one unit.
f(x) = (x + 1)? causes the graph of the function f(x) = x? shifts to the left for one unit.
(See Figure 1.54.)

Ilustration 1.12 Compare and contrast the graphs y = 22 — 1,y = 4(2? — 1) and y = (42)? — 1

\ B /
\ \ Ly VL
T o N\ T
2 'A,JY 8 U \ o) /
N/ N/
3 B 4 ~ X
-4 3 2 4 4 x “4 3 2 - 4 x
Figure 1.55 Figure 1.56 Figure 1.57

The graphs Figures 1.55 and 1.56 look identical until we compare the scales on the y-axis. The
scale in Figure 1.56 is four times as large, reflecting the multiplication of the original function by
4 (Figure 1.55). The effect looks different when the functions are plotted on the same scale as in
Figure 1.57.

The graph of y = (42)* — 1 is shown in Figure 1.58. Can you spot the difference between Figure
1.55 and Figure 1.587 In this case, x-scale has now changed, by the same factor of 4 as in the function
(Figure 1.58). To see this, note that substituting z = }1 into (42)* — 1 produces 12 — 1, exactly the
same as substituting x = 1 into the original function (Figure 1.55). When plotted on the same set of
axes (as in Figure 1.59) the parabola y = (4x)? — 1 looks thinner. Here, the z-intercepts are different,
but y-intercepts are the same.

YA

y =y /

V= (@0-1

Figure 1.58 Figure 1.59
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Illustration 1.13 By using the same concept applied in Illustration 1.12, graphs of y = sinz and
y = sin 2z, and also their combined graphs are given Figures 1.60, 1.61 and 1.62. The minimum
and maximum values of sinz and sin 2z are the same. But they have different z-intercepts. The z-
intercepts for y = sinx are £nm and for y = sin 2x are i%mr, n € 2.

P R

R S
R S

y =|sinx y = 8in2x y = 8in2x )= sinx
1

T =37/2 -\ -7/2 w2 A\ 32 2m X 2 32 fr -7

Figure 1.60 Figure 1.61 Figure 1.62

In the beginning of the section we talked about drawing the graph of y = 2sin(z — 1) + 3. Now
we are well equipped to draw the curve and even we can draw more complicated curve.
Ilustration 1.14 Let us now draw the graph of y = 2sin(z — 1) + 3.

It is clear that the curve can be obtained from that of y = sin x using translation and dilation.

So first we draw y = sinz. From that it is easy to draw the curve y = sin(x — 1); then draw
y = 2sin(x — 1) and finally y = 2sin(xz — 1) + 3. (See Figures 1.63 to 1.66.)

v

D oW A

Yy = sinx v+ sin (x-1)
1 1
// \\w )
2m 37/2 -\ /2 2 2 X 2t 3n2 - -=%/2 2
T =371/ 71/ /, 7T N\ 37/ 4 g 3n/2 - /—. 7 T 37R 2
o} .
Figure 1.63 Figure 1.64

N =

o) (98] B
~
P
~~
P

y =[2 sin (x-1)

=

[~

=
J(

~

7

=2 sin (x—1)
/nz T Vﬂ 2T x 2 32 -m a2 2 m 3m 2

/2
VAN .

=2 /-3n/2 -m 7T

S|
S

Figure 1.65 Figure 1.66
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@ Exercise - 1.4

1. For the curve y = 2° given in Figure 1.67, draw

(y=—-a3@G)y=2a®+1(i)y=2>—1(@{v)y = (z+ 1) with the same scale.

]/

L W e

-
/

Figure 1.67

2. For the curve y = 2(3) given in Figure 1.68, draw

(y=—26) Gi)y=26 +1Gi)y=28 —1G)y=(z+1)&

— I3

L W e

Figure 1.68

W

. Graph the functions f(z) = z*® and g(x) = /7 on the same coordinate plane. Find f o g and
graph it on the plane as well. Explain your results.

N

. Write the steps to obtain the graph of the function y = 3(z — 1)? + 5 from the graph y = 22

W

. From the curve y = sin z, graph the functions
s
(i) y =sin(—z) (i) y = —sin(—=z) (iii) y = sin (5 + x) which is cos z
(iv) y = sin <g — x) which is also cos x (refer trigonometry)
6. From the curve y = x, draw

1
Hy=—x (A)y=22x (G)y=x+1 (iV)y:§CE+1 V) 2x+y+3=0.

J

. Fromthe curve y = |z|,draw )y = |z — 1|+ 1 () y = |z + 1| — 1 (i) y = |z + 2| — 3.

o]

. From the curve y = sin z, draw y = sin |z| (Hint: sin(—x) = —sinz.)
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Activities

Balls and Runs
What a Celebration! What a Relation!! What a Function!!!

BATTING BLASTERCLASS

]
Fercent of runs sconvd scond i
Rohit's Joint Fastest T20 Ton 91,52 SEEEE S
were scored B hitting fours or sives. Hels hameera L, L Rshul ¢
Off 35 Balls Sinks Lanka — ey e ho
Aaron e nd Clems Muewel, b e 14, W Bareya =
. Samarawickrama b Pradeep 10,5
Buchirbishes Btimesgroadcom yer Tw Perem &, M Ferdey nat
ot 1. 0 Karthil not ot §.
Indore:. A belter of 4 wicke, short (LWl ¥
Beninduries are mrz g Tokal (£ wicks'z, 20 pvers) X0
attack. An injorm Indisn seam Fall of wickets: 1-168,2- M1
coubdn’t have asked for 2 perfect T A, 515
Foie fhan ik, Mathews
Hohit Sharma (118, 430, 1304 Chamoers 4381, Pradeap 48
1) el Loiesin Rl i, 8, 54, (12 (w3} Dananjaya
Aoty Frurscand o che Sl Lamioan o ) w1, Parera 0407 (W), De
o Wi Lol Sha | 4150 e
¢ Hohit sasied o record aqual
ing hundred, whils Rahul missed W Dickwelln.c Pandya b Urackat
ol o s secnes] T0 iom. The duo 5L Thwranga ¢ and b Cha 47,
ATBCOT ndzan . Parwrn ¢ Pancey 5 Yo 17, T
overall ulmnw;mlm Pererac Panya b Yodw 0.0
51 ki second Bixbest coul. mﬂﬁuﬁlmt:
Inedlattwn wrapid i [heserbes. ST awAC T S
without Each Choueifoc whi an m;rumom LA
18 T VICIOrY after metricting S b Crahal &,
Lanka to 1726 in 17.2 overs. The Ia- FMIIMII.I
Jiared Ao Marhews dsd| cumue Forueks sl 0ot 3 & WX Swras.
50 Lanka xept e alive I e Bl (52 7. et 1250
conesst " | 32w
with an improved batiing perfor- NOHY SHARA 3 ol in T2 overs.
LI EC LV ER ST fuies | BALLS |85 | és s ] Al af whchoec 108, D05 1%,
Fanga WOOK INdIS's W Epinne N, » 4156, 5 06L 6162, 20164, 8100,
Yuzverdra Chahal and Kubdeep L
Yaday to the claaners durine Bowling: | Lrackat -0-12-1.1
108 runy secomd wicke! sand which | W Yade
npne off Just &5 balls, Ul Cus B — = 40423 (wl), H Pandya 328201
20K, Whoro they 0 +¥ Chahal 46 824 {wd).
Yadla ‘"h\m bt sl mm:f:
¥ srigg! 51 =
50t WICkOtS I I1oras e A kndof momenran Highest Totals In Completed T20 Lundngs ———
=w|lo|w|~ in--ll"-l 'I'|1‘ —!l‘ G|1‘|'ﬂ“|ﬂ606|0‘

Source: Times of India

1. Interpret the above data as,
(1) arelation
(i1) a function
(ii1) an onto function
(iv) can you make the data as an one-to-one function? If not, why?
2. Identify the curves in Figure 1.69 and the corresponding equations for the base curve y = =
(graph with dotted line) by seeing the scale.

2

.
—
~—
T—

"
"
—
— =
\

T ——

7 ~

1!
A\
A
i\

|
/

1
~— -
N\, \\\\

[N

-

Figure 1.69
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Exercise - 1.5

. fA={(z,y):y=¢€",2 € R}and B={(z,y) :y=e*, 2 € R} thenn(AN B) is

(1) Infinity 2) 0 3) 1 4 2

.IfA={(z,y):y=sinz,z € R} and B = {(z,y) : y = cosz,x € R} then AN B contains

(1) no element (2) infinitely many elements
(3) only one element (4) cannot be determined.

. The relation R defined on a set A = {0, —1,1,2} by xRy if |z* + y?| < 2, then which one of the
following is true?

() R ={(0,0),(0,-1),(0,1),(=1,0),(=1,1), (1,2),(1,0)}
2) R~ = {(0, 0)( —1),(0,1),(=1,0),(1,0)}

(3) Domain of R is {0 -1,1,2}

(4) Range of Ris {0, —1,1}

I f(z) = o — 2|+ | + 2|,z € R, then

—2x if z € (—o0,—2]
(1) fla)=4 4 if =ze
2z it ze

2x if ze ;
(2) f(x)=< 4z if ze(-2,2
=2z if x€(2,00)

7_2]
3) f(zr)=< —4dz if ze(-2,2]
20 if 1z € (2,00)

—2r if =xz€ —2]

(
(
(
(
(
-2z if x€(—o0
(—2
(
(
(

@) flx)=< 20 if ze€
20 if 1z € (2,00)

. Let R be the set of all real numbers. Consider the following subsets of the plane R x R:
S={(z,y):y=z+1and 0 <z <2}and T = {(z,y) : © — y is an integer }

Then which of the following is true?

(1) T is an equivalence relation but .S is not an equivalence relation.
(2) Neither S nor 7T is an equivalence relation

(3) Both S and T are equivalence relation

(4) S is an equivalence relation but 7" is not an equivalence relation.

. Let A and B be subsets of the universal set N, the set of natural numbers. Then A'U[(ANB)UB'] is
(H A (2) A 3) B 4 N
. The number of students who take both the subjects Mathematics and Chemistry is 70. This

represents 10% of the enrollment in Mathematics and 14% of the enrollment in Chemistry. The
number of students take at least one of these two subjects, is

(1) 1120 (2) 1130 (3) 1100 (4) insufficient data
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.IEn((Ax B)N(Ax C)) =8andn(BNC) =2, thenn(A)is

(1) 6 2) 4 3) 8 4) 16

If n(A) =2and n(BUC) = 3,thenn[(A x B) U (A x O] is
(n 2 2 3 (3) 6 @ 5

If two sets A and B have 17 elements in common, then the number of elements common to the
set A x Band B x Ais

(1) 27 2) 17? 3) 34 (4) insufficient data

For non-empty sets A and B, if A C B then (A x B) N (B x A) is equal to
(1) AnB 2) AxA 3) BxB (4) none of these.

The number of relations on a set containing 3 elements is
(1) 9 2) 81 (3) 512 4) 1024

Let R be the universal relation on a set X with more than one element. Then R is
(1) not reflexive (2) notsymmetric (3) transitive (4) none of the above

Let X = {1,2,3,4}and R = {(1,1),(1,2),(1,3),(2,2),(3,3),(2,1),(3,1),(1,4), (4,1) }. Then
Ris

(1) reflexive (2) symmetric (3) transitive (4) equivalence
_ 1
1-2sinx

() (—oo,~1)U(t,00) @ (-11) 3 [-1,3] (4) (—o0,—1]U[3,00).

ER 3

The range of the function is

The range of the function f(x) = ||x] — x|,z € Ris
(1 [0,1] () [0,00) 3) [0,1) @) (0,1)
The rule f(x) = 22 is a bijection if the domain and the co-domain are given by

1 R,R (2) R,(0,00) (3) (0,00),R 4) [0,00),[0,00)

The number of constant functions from a set containing m elements to a set containing n elements
is

(1) mn 2) m 3 n @4 m+n

The function f : [0,27] — [—1, 1] defined by f(z) = sinx is
(1) one-to-one (2) onto (3) bijection (4) cannot be defined

If the function f : [-3,3] — S defined by f(x) = 22 is onto, then S is
1 [=9,9] 2 R 3) [-3,3] “4) [0,9]

Let X = {1,2,3,4},Y = {a,b,¢,d} and f = {(1,0a), (4,0),(2,¢), (3,d), (2,d)}. Then f is

(1) an one-to-one function (2) an onto function
(3) afunction which is not one-to-one (4) not a function
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x if z<1
22. The inverse of f(z) = { z* if 1<x<4 is
8z if >4
x if r<l1
1) flx)={ vz if 1<z<16
2 if 2> 16
—x if r<l1
@) flx)={ vz if 1<z<16
2 if 2> 16
2?2 if w<1
@) fla)={ vz if 1<z<16
2 if > 16
2z if <1
@ fla)={ vz if 1<z<16
L if 2> 16
23. Let f : R — R be defined by f(z) = 1 — |z|. Then the range of f is
H R 2 (1,00 3) (-1,00) ) (—o0,1]

24. The function f : R — R is defined by f(z) = sinx + cosx is

(1) an odd function

(2) neither an odd function nor an even function
(3) an even function

(4) both odd function and even function.

25. The function f : R — R is defined by

(22 + cosx)(1 + a?)

—lz|
(x —sinx)(2z — 23) e

fx) =

is (1) anodd function (2) neither an odd function nor an even function
(3) aneven function (4) both odd function and even function.
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e Relations

— Domain and range of relation

— Extreme relations (empty and universal)

— Inverse of a relation

— Reflexive, Symmetric, Transitive, Equivalence Relations

e Functions

— Definition, domain, co-domain, range, image, pre-image,

— Tabular, graphical, analytical and piecewise representations,

— Identity function, constant function, zero function, modulus function, signum function,
greatest integer function, smallest integer function,

— Injective, surjective and bijective functions,

— Vertical test and Horizontal test,

— Composition of functions, inverse of a function,

— Addition and multiplication of real valued functions,

— Polynomial function, linear function, exponential function, logarithmic function, rational
function, reciprocal function,

— Odd and Even functions.

e Graphing functions

— Reflection, translation, dilation
\_ — Drawing graph of some seems to be complicated functions. )

ICT CORNER-1(a)

Expected Outcome =

- = ) ) = \f : " " » |
Step-1
Open the Browser and type the URL Link given below (or) Scan the QR Code.
Step-2

A workbook named “Graph of Special Functions” will open. 7 worksheets are given in this workbook
related to Functions and Graph. Select a worksheet named “More Modulus Functions”

Step-3

Right side of the work sheet There are check boxes for many modulus functions

Step—4

You can click on any check box to view the Graph. Now Move the Slider a to change the function and
observe.
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Step-1

Step-2

= -
L L ey azaa

+ Coolebro v awa

~

Similarly you can open other work sheets and gain more knowledge about the functions through graphs.

*Pictures are only indicatives.

Browse in the link Graph of Special Functions: https://ggbm.at/ucz465auor Scan the QR Code.

Expected Outcome =

Step-1

ICT CORNER-1(b)

y = 4a?

Open the Browser and type the URL Link given below (or) Scan the QR Code.

Step-2

GeoGebra Workbook called “TRANSFORMATION OF FUNCTIONS” will appear. In that there

are 10 worksheets related to your lesson.
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Step-3
Select the work sheets one-one by one and analyse the transformations 1. Translation, 2. Reflection
and 3. Dilation.

Also, there is a worksheet for comparison of Sine functions. All you have to do is move the sliders in
the worksheets and compare.

Step-1 | Step-2
m::r-:-"--'. |

1L ittprsfoghm st/BKANIYNR . TRANSFZAATION OF TURCTIONS - Caolateiank

EY ey —— TRANSFORMATION OF
FUNCTIONS

1. Dilation: y=ax"2

2, Compare parabola by changing x-
coefficient and constant

-

3, Comparing parabola

4, Reflection of y=e*x

5. Translation: Change Inside the
Modulus

/- S I]l_,.'ll = | /i , 6. Compare: y=sinx, y=sin(x-a),
= ' y=bsin(x-a), y=bsin(x-a)+c

1. Diation: y=ae*2 0 yehangi. 3. Comparing 4 Reflection of y=e*t . Tramslation: Change Inside th 7. Reflection of )”‘2 =ax

8. Translation: By Changing the
ae constant,

9, Compare y= bsinax with y = sinx

6. Compare: yosing yesinled) T Reflechion of y*2 sae & Trslaton: By Changingthe — 9, Compare y= bsinarwithy = . 10 Reflection ol *2 = ay 10, Reflection of x*2 = ay

*Pictures are only indicatives.

Browse in the link Transformation of Functions: https://ggbm.at/bKAhRYXR
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Chapter E Basic Algebra

I see it but [ don’t believe it.

Richard Dedekind

2.1 Introduction

Algebra is a branch of mathematics in which one expresses relations among quantities by using
symbols to represent these quantities. The symbols are called the variables. In this class we shall allow
the variables to represent real numbers only. One can carry out manipulations and computations using
variables just as one does with numbers. That is, one may substitute real numbers for the variables in
the expression and the resulting value will also be a real number. Once a quantity or a mathematical
statement is expressed in terms of variables, it is possible to substitute specific numerical values for
those variables. This makes algebra a very powerful tool. For this reason the subject of algebra has
very wide application, not only within mathematics, but also in other disciplines and in real life. The
notion of real numbers is fundamental to the whole of mathematics. The real number system was well
understood only in the nineteenth century. The need for extending the rational numbers arose quite
early in the history of mathematics. Pythagoreans knew that v/2 was not a rational number. Certain
constructions involving irrational numbers can be found in Shulbha Sutras, which date back to
around 800 BC(BCE). Aryabhata (476-550) had found approximations to 7.

Indian mathematicians like Brahmagupta (598-670) and Bhaskaracharya
(1114-1185) had made contributions to the understanding of the real
numbers system and algebra. In his work Brahmagupta had solved
the general quadratic equation for both positive and negative roots.
Bhaskaracharya solved quadratic equations with more than one unknown
and found negative and irrational solutions. The most important real
number zero was the contribution by Indians.

Rene Descartes (1596-1650) introduced the term “real” to describe
roots of a polynomial distinguishing them from imaginary ones. A rig-
orous construction of real number system was due to Richard Dedekind
(1831-1916). Richard Dedekind

(1831-1916)

(Learning Objectives )

On completion of this chapter, the students are expected to know

e the concept of real numbers and their properties.
e the absolute value, polynomials, exponents, radicals, logarithms and functions of one
variables involving these concepts.
e how to solve equations, inequalities involving above mentioned functions.
e how to solve linear inequalities involving two variables and representing the solutions
\_ graphically in the cartesian plane. Y,
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2.2 Real Number System

First we shall recall how the real number system was developed. We start with natural numbers N.

2.2.1 Rational Numbers

Note that N = {1,2,3,...} is enough for counting objects. In order to deal with loss or debts,
we enlarged N to the set of all integers, Z = {...,—4,—3,—2,—1,0,1,2,...}, which consists of
the natural numbers, zero, and the negatives of natural numbers. We call {0,1,2,3,---} as the set
of whole numbers and denote it by W. Note that it differs from N by just one element, namely,
zero. Now imagine dividing a cake into five equal parts, which is equivalent to finding a solution
of bx = 1. But this equation cannot be solved within Z. Hence we have enlarged Z to the set
Q= { Zlm,neZ,n#0 } of ratios; so we call each = € QQ as a rational number. Some examples
of rational numbers are

22
-5, —, 0, —, 7, 12.
9 ) 9 7 Y Y

We have seen in earlier classes that rational numbers are precisely the set of terminating or infinite
periodic decimals. For example,

2 2
—5.0, —=2.333-- -, £ = 0.252525 - -, 3= 0.66666 - - - ,7.14527836231231231 - - -

are rational numbers.

2.2.2 The Number Line

Let us recall “The Number Line”. It is a horizontal line with the origin, to represent 0, and another

point marked to the right of 0 to represent 1. The distance from 0 to 1 defines one unit of length. Now

put 2 one unit to the right of 1. Similarly we put any positive rational number x to the right of 0 and

x units away. Also, we put a negative rational number —7r, 7 > 0, to the left of 0 by 7 units. Note that
. . Tty

forany x,y € Qif x < y, then x is to the left of y; also x+ < ———= < y and hence between any two

distinct rational numbers there is another rational number between them.

Question:

Have we filled the whole line with rational numbers?
The answer to the above question is “No” as the following consideration demonstrates. Consider
a square whose side has length 1 unit. Then by Pythagoras theorem its diagonal has length v/2 units.

1

Figure 2.1
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2.2.3 Irrational Numbers

Theorem 2.1: \/§ 1s not a rational number.

Proof. Suppose that /2 is a rational number. Let /2 = ™, where m and n are positive integers with
no common factors greater than 1. Then, we have m? = 2n?, which implies that m? is even and hence
m 1s even.
Let m = 2k. Then, we have 2n? = 4k? which gives n? = 2k2.
Thus, n is also even.
It follows, that m and n are even numbers having a common factor 2.
Thus, we arrived at a contradiction.
Hence, \/5 1s an irrational number. [ |

Remark:

(i) Note that in the above proof we have assumed the contrary of what we wanted to prove and
arrived at a contradiction. This method of proof is called ‘proof by contradiction’.
(i) There are points on the number line that are not represented by rational numbers.
(iii)) We call those numbers on the number line that do not correspond to rational numbers as
irrational numbers. The set of all irrational numbers is denoted by Q" (For number line see
Figure 1.2.)

Every real number is either a rational number or an irrational number, but not both. Thus,
R=QUQ andQNQ = 0.

As we already knew that every terminating or infinite periodic decimal is a rational number, we
see that the decimal representation of an irrational number will neither be terminating nor infinite
periodic. The set R of real numbers can be visualized as the set of points on the number line such that
if x < y, then x lies to left of .

Figure 2.2 demonstrates how the square roots of 2 and 3 can be identified on a number line.

Figure 2.2

We noticethat NC W C Z C Q C R.

As we have already observed, irrational numbers occur in real life situations. Over 2000 years ago
people in the Orient and Egypt observed that the ratio of the circumference to the diameter is the same
for any circle. This constant was proved to be an irrational number by Johann Heinrich Lambert in
1767. The value of 7 rounded off to nine decimal places is equal to 3.141592654. The values % and
3.14, used in calculations (such as area of a circle or volume of a sphere) are only approximate values
for 7.

[@ The number 7, which is the ratio of the circumference of a circle to its diameter, is an
irrational number.
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Now let us recall the properties of the real number system which is the foundation for mathematics.

2.2.4 Properties of Real Numbers
(i) Forany a,b € R,a+0b € Randab € R.
[Sum of two real numbers is again a real number and multiplication of two real numbers is
again a real number.]
(ii) Forany a,b,c € R, (a +b)+c=a+ (b+c) and a(bc) = (ab)c.
[While adding (or multiplying) finite number of real numbers, we can add (or multiply) by
grouping them in any order.]
(iii) Foralla € R,a+0=aand a(l) = a.
(iv) Forevery a € R, a+ (—a) = 0 and forevery b € R — {0}, b(;) = 1.
(v) Forany a,b € R,a+ b= b+ aand ab = ba.
(vi) Fora,b,c € R, a(b+ ¢) = ab+ ac.
(vii) Fora,b € R, a < bifand only if b —a > 0.
(viii) Forany a € R, a® > 0.
(ix) For any a,b € R, only one of the following holds:a =b or a<b or a>b.
x) Ifa,b e Randa < b, thena + ¢ < b+ cforall c € R.
(xi) Ifa,b € Rand a < b, then ax < bz for all x > 0.
(xii) If a,b € Rand a < b, then ay > by for all y < 0.

@ Exercise - 2.1

1. Classify each element of {\/7, =, 0,3.14, 4, 2} as a member of
N,Q,R—-QorZ.

2. Prove that \/5 18 an irrational number.
(Hint: Follow the method that we have used to prove v/2 ¢ Q.)

3. Are there two distinct irrational numbers such that their difference is a rational number? Justify.

4. Find two irrational numbers such that their sum is a rational number. Can you find two irrational
numbers whose product is a rational number.

1
5. Find a positive number smaller than 21000 Justify.

2.3 Absolute Value

2.3.1 Definition and Properties

As we have observed that there is an order preserving one-to-one correspondence between elements
of R and points on the number line. Note that for each z € R,  and —x are equal distance from the
origin. The distance of the number ¢ € R from 0 on the number line is called the absolute value of
the number a and is denoted by |a|. Thus, for any = € R, we have

m_ z if x>0,
] —x if x<0.

and hence | - | defines a function known as absolute value function, from R onto [0, o) and the graph
of this function is discussed in Chapter 1.
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D (i) For any x € R, we have |z| = | — | and thus, |z| = |y| if and only if x = y or
=0 T = —y.
(i) |t —a| =rifandonlyifr >0andx —a=rorzx —a = —r.

2.3.2 Equations Involving Absolute Value

Note that a real number a is said to be a solution of an equation or an inequality, if the statement
obtained after replacing the variable by a is true.
Next we shall learn solving equations involving absolute value.

Example 2.1 Solve |2z — 17| = 3 for z.

Solution:
|2z — 17| = 3. Then, we have 2z — 17 = +3 which implies z = 10 or x = 7.

Example 2.2 Solve 3|z — 2| + 7 = 19 for .

Solution:

3|z — 2| + 7 = 19. So that we have, |z — 2| = &1 =4,
Thus, we have eitherx — 2 =4 orxz — 2 = —4.
Therefore the solutions are x = —2 and x = 6.

Example 2.3 Solve |2z — 3| = |z — 5|.

Solution:
We know that |u| = |v| if and only if u = v or u = —v.
Therefore, |22 — 3| = |z — 5| implies 2z —3 =2 —5or2x —3 =5 — x.
8
Solving these two equations, we get z = —2 and v = —.
8
Hence, both x = —2 and x = 3 are solutions.

2.3.3 Some Results For Absolute Value
() fz,y eR, ly+z| = |z —yl, thenzy = 0.
(ii) Forany z,y € R, |zy| = |z||y].
Gii) 2] = &l forallz,y € Rand y # 0.

T
(iv) Forany z,y € R, |z + y| < |z| + |y|-

z
Y

2.3.4 Inequalities Involving Absolute Value

Here we shall learn to solve inequalities involving absolute values. First we analyze very simple
inequalities such as (i) |z| < r and (ii) |z| > 7.

(i) Let us prove that |z| < r if and only if —r < z < r. Note that r > 0 as |x| > 0.
There are two possibilities to consider depending on the sign of x.

Case (1): If x > 0, then |x| = z, so |z| < r implies x < r.
Case (2): If x < 0, then |x| = —=z, so |z| < r implies —z < r thatis, z > —r.

Therefore we have, |z| < r if and only if —r < x < r, thatis z € (—r, r).
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(ii) Let us prove that |z| > rif and only if z < —r or z > r.
Consider |z| > 7. If r < 0, then every « € R satisfies the inequality.
For r > 0, there are two possibilities to consider.
Case (1). If x > 0, then || =z > 7.
Case (2). If x < 0, then || = —x > r, thatis, x < —r.
So we have |z| > r, if and only if < —r or z > 7, thatis, x € (—o0, —r) U (r, 00).

Remark:
(i) Foranya € R, |t —a| < rifandonlyif —r <z —a <rifandonlyifz € [a — 7, a + r|.
(ii) For any a € R, |z — a] > ris equivalent to x —a < —r or x —a > r if and only if
x € (—oo,a—r]Ula+r, 00).

Example 2.4 Solve |z — 9| < 2 for .

Solution:
|z — 9| < 2implies —2 < z — 9 < 2. Thus, 7 < x < 11.

2
4‘>1,x7é4.

xr —

Example 2.5 Solve

Solution:

From the given inequality, we have that 2 > |z — 4.

Thatis, -2 < x — 4 < 2 and x # 4.

Adding 4 throughout the inequality, we obtain 2 < z < 6and x # 4.
So the solution set is (2,4) U (4, 6).

@ Exercise - 2.2

1. Solve for z:
Qi |3—=z <7 (i) |4z —5|>—2. (i) [3—3%z| <L

(iv) |z|—10 < —3.
Solve ﬁ < 6 and express the solution using the interval notation.
Solve —3|x| + 5 < —2 and graph the solution set in a number line.
Solve 2|x + 1| — 6 < 7 and graph the solution set in a number line.
Solve 110z — 2| < 1.
Solve [5z — 12| < —2.

SAINARP IR

2.4 Linear Inequalities

Recall that a function of the form f (x) = ax + b, a,b € R are constants, is called a linear function,
because its graph is a straight line. Here a is the slope of the line and b is the y-intercept. If a # 0,
then z-intercept z = =2 is obtained by solving f(z) = az + b = 0.

But there are situations where we need to consider linear inequalities.

For example to describe a statement like “ A tower is not taller than fifty feet.”

If = denotes the height of the tower in feet, then the above statement can be expressed as = < 50.
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Example 2.6 Our monthly electricity bill contains a basic charge, that is independent of units
consumed and a charge that depends on the units consumed. Let us say Electricity Board charges
Rs.110 as basic charge and charges Rs. 4 for each unit we use. If a person wants to keep his
electricity bill below Rs.250, then what should be his electricity usage?

Solution:

Let x denote the number of units used. Note that x > 0. Then, his electricity bill is Rs. 110 + 4z.
The person wants his bill to be below Rs.250. Let us solve the inequality 110 + 4z < 250. Thus,
4z < 140; which gives 0 < = < 35.

The person should keep his usage below 35 units in order to keep his bill below Rs.250.

Example 2.7 Solve 3x — 5 < x + 1 for x.

Solution:
We have 3x — 5 < x + 1; which is equivalent to 2x < 6. Hence we have x < 3; the solution set is
(—o0, 3].

Q We can also solve the above inequality graphically.
Let us consider the graphs of f(z) = 3z — 5 and g(x) = = + 1 (See Figure 2.3). Now,
find all the z-values for which the graph of f is below the graph of g.

Slx) =3x-5

8(x) = x+1

L ST I NI - N

4 32/10 1/2 3 45 6 7 8«

Figure 2.3

Example 2.8 Solve the following system of linear inequalities.
3r—9>0, 4r—10<6.

Solution:
Note that 3z — 9 > 0 implies 3z > 9, by multiplying both sides by 1/3 we get x > 3. Similarly,
4z — 10 < 6 implies 4z < 16 and hence x < 4.

So the solution set of 3z —9 > 0, 4z — 10 < 6 is the intersection of [3, c0) and (—o0, 4]. Clearly,
the intersection of these intervals give [3, 4].
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Example 2.9 A girl A is reading a book having 446 pages and she has already finished reading 271
pages. She wants to finish reading this book within a week. What is the minimum number of pages
she should read per day to complete reading the book within a week?

Solution:
Let z denote the number of pages the girl should read per day. Then we need our z to satisfy
Tx + 271 > 446. Hence x > 25; which implies that she should read at least 25 pages per day.

In all the above examples observe that each inequality has more than one solution. Inequalities in
general give rise to a range of solutions.

Exercise - 2.3

1. Represent the following inequalities in the interval notation:
i) z>—-landx <4 @(i) z<bandx > -3
(i) r<—-lorx<3d (iv) —2r>0ordzx—4<I1l.

2. Solve 232 < 100 when (i) x is a natural number, (ii) = is an integer.
3. Solve —2x > 9 when (i) z is a real number, (ii) z is an integer, (iii) = is a natural number.

(x—=2) 52—-x) .. 5b—=x
5 < TR (ii) 3 < 5 4.
5. To secure A grade one must obtain an average of 90 marks or more in 5 subjects each of maximum
100 marks. If one scored 84, 87,95, 91 in first four subjects, what is the minimum mark one scored

in the fifth subject to get A grade in the course?

6. A manufacturer has 600 litres of a 12 percent solution of acid. How many litres of a 30 percent
acid solution must be added to it so that the acid content in the resulting mixture will be more than
15 percent but less than 18 percent?

7. Find all pairs of consecutive odd natural numbers both of which are larger than 10 and their sum
is less than 40.

8. A model rocket is launched from the ground. The height /i reached by the rocket after ¢ seconds
from lift off is given by h(t) = —5t>+100¢,0 < ¢ < 20. At what time the rocket is 495 feet above
the ground?

9. A plumber can be paid according to the following schemes: In the first scheme he will be paid
rupees 500 plus rupees 70 per hour, and in the second scheme he will be paid rupees 120 per hour.
If he works z hours, then for what value of x does the first scheme give better wages?

10. A and B are working on similar jobs but their monthly salaries differ by more than Rs 6000. If B
earns rupees 27000 per month, then what are the possibilities of A’s salary per month?

T

4. Solve: (i) 3

2.5 Quadratic Functions

In earlier classes we have learnt that forany z € Randn € N, 2" = z - 2 -
z -z (n-times).

A function of the form P(x) = axz? + bx + ¢, where a, b, ¢ € R are constants
and a # 0, is called a quadratic function. If P(¢) = 0 for some ¢ € R, then
we say t is a zero of P(x).
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2.5.1 Quadratic Formula

[s it possible to write the general quadratic function P(z) = az?+bx+c
in the form a(x — k)? 4+ d? The answer is yes. We can do this by the
method called “completing the square.” We shall rewrite the function
P(z) as follows:

P(x) = ar’+bx+c

= a(x2+2xi+£)
o b 2 b2+c
= 22 x— — ] - —=+-
2a 4a?  a

2 b2
= a(x+ ) 4—a2+c
= b z—bb—f-
= al|lx+ a 2a 2a c|.

Thus, P(z) = (:1:+2ba) +P(25> (1)

Now, to find the x- intercepts of the curve described by P(z), let us solve for P(x) = 0.
b

Considering P(x) = 0 from (1) it follows that a (x + 2—) + P (;_;) = 0.
a

b\2 _
a(r+g) = —P(3)
__ (=b’+4a0)
2 B 2 da
b _ b°—4ac
(.I'—F%) — T 4aZ -
Soxr = Vvb2—4ac b or r — _ Vb%2—dac i
2a 2a 2a QCL.

Hence, © = =% e b2 dac. which is called the quadratic formula.

Remark:

(i) Note that \/u is defined as a real number only for u > 0.
(ii) when we write \/u, we mean only the nonnegative root.

Note that P(z) = 0 has two distinct real solutions if 5> — 4ac > 0, the roots are real and equal if
b%? — 4ac = 0, and no real root if b> — 4ac < 0.

Thus the curve intersects x-axis in two places if b*> — 4ac > 0, touches z-axis at only one point if
b*> — 4ac = 0, and does not intersect x-axis at any point if b> — 4ac < 0.

That is why D = b* — 4ac is called the discriminant of the quadratic function P(z) = ax? + bx + c.

Elb (i) If o and f3 are roots of ax? + bx + ¢ = 0, then a + 3 = %bandaﬁz <
(ii) If the discriminant b®> — 4ac is negative, then the quadratic equation
ax? + bx + ¢ = 0, has no real roots. In this case, we have complex roots given by

—b + iv4ac — b2 —b — iv/4ac — b?

2
o= o0 , B= o0 ,  where i“ = —1,
which we will study in Higher Secondary Second year
(iii) For example, let us look at the graph of y = 22 — 4x + 5. (See Figure 2.4.)
Since the graph does not intersect the x—axis, 22 — 4z + 5 = 0 has no real roots.
(iv) We have the following table describing the nature of the roots of a quadratic
equation and the sign of the discriminant D = b? — 4ac.
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 Y=x-4x+S

Figure 2.4

\ Discriminant \ Nature of roots \ Parabola \

Positive real and distinct | intersects x-axis at two points
Zero real and equal touches x-axis at one point
Negative no real roots does not meet x-axis

1 1
Example 2.10 If ¢ and b are the roots of the equation 22 — px + ¢ = 0, find the value of — + 7
a

Solution:

Given that a and b are the roots of 22 — pz + ¢ = 0. Then, a + b = p and ab = q. Thus,
I 1 a+b p

a b ab q

Example 2.11 Find the complete set of values of a for which the quadratic 22 — az +a +2 = 0
has equal roots.

Solution:

The quadratic equation x> — ax + a + 2 = 0 has equal roots.

So, its discriminant is zero. Thus, D = b*> — 4ac = a® — 4a — 8 = 0.
So, a = /% which gives a = 2+ V12, 2 — V/12.

Example 2.12 Find the number of solutions of z* + |z — 1| = 1.

Solution:

Case (1). Forz > 1, |z — 1| =2z — 1.
Then the given equation reduces to 22 +x—2 = (. Factoring we get (z+2)(x—1) = 0,
which implies t = —2 or 1. As x > 1, we obtain z = 1.
Case (2). Forz < 1,|lz —1|=1—-2z
Then the given equation becomes 22 + 1 — x = 1. Thus we have z(z — 1) = 0 which
implies x = O0or x = 1. As x < 1, we have to choose z = 0.

Thus, the solution set is {0, 1}. Hence, the equation has two solutions.
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Exercise - 2.4

Construct a quadratic equation with roots 7 and —3.
. A quadratic polynomial has one of its zeros 1 + 1/5 and it satisfies p(1) = 2. Find the quadratic
polynomial.
3. If o and 3 are the roots of the quadratic equation 2 + v/22 + 3 = 0, form a quadratic polynomial
with zeroes *, %
If one root of k(z — 1)* = 5z — 7 is double the other root, show that & = 2 or —25.
. If the difference of the roots of the equation 222 — (a + 1)z +a — 1 = 0 is equal to their product,
then prove that a = 2.
6. Find the condition that one of the roots of az? + bz + ¢ may be (i) negative of the other, (ii)
thrice the other, (iii) reciprocal of the other.
7. If the equations 2% — ax + b = 0 and 2* — ex + f = 0 have one root in common and if the second
equation has equal roots, then prove that ae = 2(b + f).
Discuss the nature of roots of (i) —2? + 3z +1 =0, (ii)42?> — 2 —2=0, (iii) 92° + 5z = 0.
9. Without sketching the graphs, find whether the graphs of the following functions will intersect the
x-axis and if so in how many points.
(y=a>+2+2, i)y = 2> -3z —7, (iii) y = 2> + 62 + 9.
10. Write f(z) = 2* + 5z + 4 in completed square form.

[\

v

*®

2.5.2 Quadratic Inequalities

Here we shall learn to solve the quadratic inequalities az? + bz + ¢ < 0 or az? + bz + ¢ > 0.

Steps to Solve Quadratic Inequalities:

(i) First solve az? + bx + ¢ = 0.
(i1) If there are no real solutions, then one of the above inequality holds for all z € R
(iii) If there are real solutions, which are called critical points, then label those points on the number
line.
(iv) Note that these critical points divide the number line into disjoint intervals. (It is possible that
there may be only one critical point.)
(v) Choose one representative number from each interval.
(vi) Substitute that these representative numbers in the inequality.
(vii) Identify the intervals where the inequality is satisfied.

Example 2.13 Solve 322 + 5z — 2 < 0.

Solution:

On factorizing the quadratic polynomial we get 3(z + 2)(z — %) < 0. Draw the number line. Mark
the critical points —2 and % where the factors vanish (See Figure 2.5). On each sub-interval check
the sign of (z + 2)(z — %). To do this pick an arbitrary point anywhere in the interval. Whatever
sign the resulting value has, the polynomial has the same sign throughout the whole corresponding
interval. (Otherwise, there would be another critical point within the interval). This process is easily

organized in the following table.
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(=2,0) (1/3,0)
-4 - 2 4

4
y=3x2#5x-2

Figure 2.5

Interval | Sign of (z +2) | Sign of (x — 1/3) | Sign of 32% + 5x — 2
(—o0, —2) - - +
(=2,1/3) + - -

(1/3,00) + + +

You can see the inequality is satisfied in [—2, 1/3].

Example 2.14 Solve vz + 14 < x + 2.

Solution:

The function v/« + 14 is defined for = + 14 > 0. Therefore x > —14, x + 2 > 0 implies x > —2.
(x4 14) < (z + 2)* gives 2% + 3z — 10 > 0.

Hence, (x + 5)(z — 2) > 0. Dividing the number line with the critical points z = —5 and = = 2.
Substituting a reference point in the sub-interval we get the solution set to be z < —5 and x > 2.
Since z > —2, we have the solution to be x > 2.

Example 2.15 Solve the equation /6 — 4x — 22 = x + 4.

Solution:

The given equation is equivalent to the system
(r+4)>0and 6 — 4z — 22 = (z + 4)%

This implies © > —4 and 2% + 62 + 5 = 0. Thus, z = —1, —5.
But only x = —1 satisfies both the conditions. Hence, v = —1.

Exercise - 2.5

1. Solve 222 + 2 — 15 < 0.
2. Solve —2%2 + 3z —2 > 0.
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2.6 Polynomial Functions

So far we have understood about linear functions and quadratic functions. Now we shall generalize
these ideas. We call an expression of the form a,z" + a,_12" ! + --- + aq is called a polynomial
in the variable z, where a; € R, i = 0,1,2,--- ,n. Here n is a non-negative integer. When a,, # 0,
we say that the polynomial has degree n. The numbers ay, a1, . .., a, € R are called the coefficients
of the polynomial. The number ay is called the constant term and a,, is called the leading coefficient
(when it is non-zero). It is clear that:

(i) 10027 — w2® 4+ 204/22% + Tx 4 1.22 is a polynomial of degree 7.
(i) (172 — 3)(z + 3)(2z — /7)(x + 2.3) is a polynomial of degree 4.
(i) (22 + 2+ 1)(2® + 22 + 2)(2° — 5z + v/3) is a polynomial of degree 10.

One may substitute specific values for x, say x = ¢ and obtain a,,c" + a,_;c" 1 + -+ + a;c + ay.
A function of the form P(z) = a,a™ + a, 12"~ ' + - - - + aq is called a polynomial function which is
defined from R to R. We shall treat polynomial and polynomial function as one and the same.

A polynomial with degree 1 is called a linear polynomial. A polynomial with degree 2 is called
a quadratic polynomial. A cubic polynomial is one that has degree three. Likewise, degree 4 and
degree 5 polynomials are called quartic and quintic polynomials respectively. Note that any constant
a # 0 is a polynomial of degree zero!

Two polynomials f(x) = a,a™ + a,_ 12" ' + -+ + ag, a, # 0and g(x) = byx™ + by 2™ +
-+ 4 by, by, # 0 are equal if and only if f(z) = g(x) for all z € R. It can be proved that f(z) = g(x)
if and only if n = m and a;, = by, k = 0,1,2,---n. Given two polynomials, one can form their
sum and product. For example if P(z) = 22 + 72> — 5 and Q(z) = 2* — 223 + 22 + x + 1, then
P(z) + Q(z) = z* + 82% + x — 4 (by adding the corresponding coefficients of the like powers of )
and P(z)Q(z) = 22" + 32% — 122° + 42* + 1923 + 222 — 5z — 5 by multiplying each term of P(x)
by every term of ()(x). It is easy to see that the degree of P(x)Q(x) is the sum of the degrees of P(x)
and (), whereas the degree of P(x) + Q(x) is at most the maximum of degrees of P(z) and Q(x).
Here is an example of the graph of a cubic polynomial function.

Figure 2.6

Suppose that f(x) and g(z) are polynomials where g(x) is not zero. The quotient % is called a

rational function, which is defined for all x € R such that g(x) # 0. In general, a rational function
need not be a polynomial.
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2.6.1 Division Algorithm

Given two polynomials f(z) and g(z), where g(z) is not the zero polynomial, there exist two
polynomials ¢(x) and r(z) such that f(z) = ¢(x)g(x)+r(x) where degree of r(z) < degree of g(z).
Here, ¢(x) is called the quotient polynomial, and r(x) is called the remainder polynomial. If r(z) is
the zero polynomial, then ¢(x), g(x) are factors of f(z) and f(z) = q(z)g(z).

These terminologies are similar to terminologies used in division done with integers.

If g(x) = x — a, then the remainder r(x) should have degree zero and hence r(z) is a constant. To
determine the constant, write f(z) = (v — a)q(x) + c. Substituting x = a we get ¢ = f(a).

Remainder Theorem

If a polynomial f(x) is divided by = — a, then the remainder is f(a). Thus the remainder c = f(a) =0
if and only if  — a is a factor for f(z).

Definition 2.1

A real number « is said to be a zero of the polynomial f(x) if f(a) = 0. If x = a is a zero of
f(z), then x — a is a factor for f(x).

In general, if we can express f(z) as f(z) = (z — a)*.g(x) where g(a) # 0, then the value of %,
which depends on a, cannot exceed the degree of f(x). The value k is called the multiplicity of the
Zero a.

R (i) A polynomial function of degree n can have at most n distinct real zeros. It is
also possible that a polynomial function like P(z) = z? + 1 has no real zeros at
all.

(ii) Suppose that P(x) is a polynomial function having rational coefficients. If a +
b,/p where a,b € Q, p a prime, is a zero of P(x), then its conjugate a — b,/p is
also a zero.

Two important problems relating to polynomials are

(i) Finding zeros of a given polynomial function; and hence factoring the polynomial into linear
factors and

(i1) Constructing polynomials with the given zeros and/or satisfying some additional conditions.

To address the problem of finding zeros of a polynomial function, some well known algebraic
identities are useful. What is an identity?

An equation is said to be an identity if that equation remains valid for all values in its domain. An
equation is called conditional equation if it is true only for some (not all) of values in its domain. Let
us recall the following identities.

2.6.2 Important Identities

For all z,a,b € R we have

l. (z+a)= (x+a)2(x+a) = 23 + 32%a + 3wa® + a® = 23 + 3wa(z + a) + a®

2. (x—0)3 =23 — 3220+ 3xb® — V* = 2% — 3ab(x — b) — b° (taking a = —bin (1))
3. 3+a (x4 a)(z* — za + a?)

4. x —b3 (x —b)(2® + b+ b?) taking a = —bin (3)

5. 2" —a" = (v —a)(z" 1+x a4+ am b oo e, neN

6. 2"+ 0" = (x+b)(x" ' —a" o+ 2 4 (<)), neN
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Exercise - 2.6

1. Find the zeros of the polynomial function f(z) = 42% — 25.

2. If x = —21is one root of 2> — 22 — 17z = 22, then find the other roots of equation.
3. Find the real roots of z* = 16.

4. Solve (22 +1)* — (3z +2)* = 0.

Method of Undetermined Coefficients

Now let us focus on constructing polynomials with the given information using the method of
undetermined coefficients. That is, we shall determine coefficients of the required polynomial using
the given conditions. The main idea here is that two polynomials are equal if and only if the
coefficients of same powers of the variables in the two polynomials are equal.

Example 2.16 Find a quadratic polynomial f(x) such that, f(0) =1, f(—2) =0 and f(1) = 0.

Solution:

Let f(x) = az? + bz + c be the polynomial satisfying the given conditions.

f(0) = a(0)*+b(0)+c = 1, implies that ¢ = 1. Now the other two conditions f(—2) = 0, f(1) =0
giveda —2b+c=0anda+b+c=0. .

Using ¢ = 1, we get 4a—2b = —1 and a+b = —1. Solving these two equations we geta = b = —3

1 1
and thus, we have f(z) = —5302 -5t 1.

El@ The above problem can also be solved in another way. x = —2, x = 1 are zeros of
f(z). Thus, f(z) = d(z + 2)(x — 1) for some constant d.
Now using f(0) = 1 gives —2d = 1, hence d = —1. So, f(z) = —3(z+2)(z—1) =
1,2 1

Example 2.17 Construct a cubic polynomial function with rational coefficients having zeros at
z = 2,14 v/3such that f(0) = —8.

Solution:

Given that £ and 1 + /3 are zeros of f(z). Thus, 1 — /3 is also a zero of f(z).

Let f(z) — a(z — D[z — (1+ V3)]lz — (1 - V3)] = alz — Dl — 1> - 3]

Using f(0) = —8, we have, (—2a) (—2) = —8 which give a = —10.

Thus the required polynomial is f(z) = (—10)(z — 2)[2? — 2z — 2] = —102® + 242? + 122 — 8.

Example 2.18 Prove that ap+q = 0 if f(z) = 2® — 3px + 2q is divisible by g(z) = 2? + 2ax + a*.

Solution:
Note that the degree of f(x) is 3 and the leading coefficient is 1. Since g(z) divides f(z), we have
f(x) = (x + b)g(x), for some b € R. Thus, 3 — 3px + 2q = (x + b)(2? + 2ax + a?).

Equating like coefficients on both sides, we have 2a + b = 0, a? + 2ab = —3p and 2q = ba®.
Thus, b = —2a, p = a?, and ¢ = —a®.

Now, ¢ = —a® = —a(a®) = —ap, which gives ap + q = 0.
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Example 2.19 Use the method of undetermined coefficients to find the sum of
14243+---+(n—1)+n,neN

Solution:

Let S(n) = n+(n—1)+(n—2
= n+n-—1)+mn-2
n—1 n-—2 n—n—2 n—(n-1)
+ +oot +
n n n n

n|l+

n[l+14---+1] since t
Thus, S(n) < n?

IN

Now, S(n+1)—S(n n+1
at+bn+1)+cn+1)2—[at+bn+cn? = n+1l
b+2cn+c = n+1

Let S(n) = a+bn+cn?® where a,b,c, € R.
]

1

Thus, b + ¢ = 1 and 2c¢ = 1 (Equating like coefficients) which give b = —; ¢ = 3

Now, S(1) =1, a+ b+ c=1which givesa =0
1 1 n(n+1)

Hence, S(n) = gt §n2 = 5

N —

,n € N.

Example 2.20 Find the roots of the polynomial equation (z — 1)*(x + 1)?*(z + 5) = 0 and state
their multiplicity.
Solution:
Let f(z) = (x — 1)*(z + 1)*(x + 5) = 0. Clearly, we have z = 1, —1, —5.
Hence, the roots are 1 with multiplicity 3, —1 with multiplicity 2 and —5 with multiplicity 1.

DQ When the root has multiplicity 1, it is called a simple root.

Example 2.21 Solve v = v/x + 20 for x € R.

Solution:

Observe that v/ + 20 is defined only if x + 20 > 0.
By definition, (z + 20) > 0. So =z is positive.
Now squaring we get 22 = 2 +20. 22 — 2 — 20 =0
(x —5)(x +4) = 0, which gives x = 5,2 = —4
Since, z is positive, the required solution is z = 5.
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Example 2.22 The equations 2° — 6z + a = 0 and 2> — bx + 6 = 0 have one root in common. The
other root of the first and the second equations are integers in the ratio 4 : 3. Find the common root.

Solution:

Let « be the common root.

Let o, 4/3 be the roots of 22 — 62 4+ a = 0.

Let o, 3/3 be the roots of 22 — bz + 6 = 0.

Then, 45 = a and 3o, = 6 which give aff = 2 and a = 8.
The roots of 22 — 6z + 8 = 0 are 2, 4.

Ifa=2thenff =1

If « =4, then § = % which is not an integer.

Hence, the common root is 2.

Example 2.23 Find the values of p for which the difference between the roots of the equation
z2 +pxr+8=0is 2.

Solution:
Let o and 3 be the roots of the equation 22 + pz + 8 = 0.
Then, o + = —p, af =8 and |a — ]| = 2.
Now, (a+ 3)* —4af = (a — 3)?, which gives p? — 32 = 4. Thus, p = +6.

Exercise - 2.7

1. Factorize: x* + 1. (Hint: Try completing the square.)
2. If 22 + x + 1 is a factor of the polynomial 323 + 822 + 8z + a, then find the value of a.

2.7 Rational Functions

A rational expression of x is defined as the ratio of two polynomials in x, say P(z) and Q () where
20+1  2*+1 r’ +

, an )
[ A I | 2 —5x+6

Q(z) # 0. Examples of rational expressions are

If the degree of the numerator P(x) is equal to or larger than that of the denominator )(z), then
we can write P(x) = f(x)Q(x)+r(x) where r(x) = 0 or the degree of (z) is less than that of Q(z).

P) o, o)

3° ) Q@)

2.7.1 Rational Inequalities

x+1

Example 2.24 Solve 5 < 3.

JF 4F
Solution:

1
Subtracting 3 from both sides we get T

—3<0.
3

gt AF
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z+1—3(z+3)

r+3
—2x — 8

T+ 3
z+4

T+ 3

Thus, x + 4 and x + 3 are both positive or both negative.
So let us find out the signs of = + 3 and = + 4 as follows

8
o
N

i r+3|x+4

o

S
of+| I |+|H

T < —4 —
4 <r< -3 —
r>—3 F
= = _

S|+ |+ |

So the solution set is given by (—oo, —4) U (—3, 00).

Q) The above type of rational inequality problem can also be solved by plotting the signs
of various factors on the intervals of the number line.

Exercise - 2.8

1. Find all values of = for which >0
. . . . 20 — 3
2. Find all values of x that satisfies the inequality —— < 0.
CEPICETY
3. Solve — 24—
. Solve ——— :
x?2—2x—15 —
2.7.2 Partial Fractions
A rational expression %x; is called a proper fraction if the degree of f(x) is less than degree of g(z),
g(x

where g(x) can be factored into linear factors and quadratic factors without real zeros. Now 1) can

(z)
be expressed in simpler terms, namely, as a sum of expressions of the form !
. Ay Ay Ap . ..

@) G—a)  w=ay ot G_aF if z — a divides g(z) and
.. (Bl.TT -+ Cl) (BQSC -+ 02) (Bk.% + Ck) . 2
(i1) (2 tar+b) (2 +az+b)? e m if 2° 4 ax + b has no real zeros and

(22 4+ ax + b) divides g(x).

f(z)

The resulting expression of

(@) is called the partial fraction decomposition. Such a decomposition
. . . G\r)
is unique for a given rational function.

This method is useful in doing Integral calculus. So let us discuss some examples.
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T

Example 2.25 Resolve into partial fractions: ————.
P P (@ +3)(z — 4)

Solution:

A
Let <

B

(z+3)(x—4)=x+i(+xz)4 Bl
x T —4)+ DT+ . :

Then, RNy = R , which gives © = A(x — 4) + B(x + 3).

When x = 4, we have B =

where A and B are constants.

W

=~

When z = —3, we have A = %

0 T . 3 4
o e 13w —4) Te+3)  Ta@—4)

R The above procedure can be carried out if the denominator has all its zeros in R which
are all distinct.

i
(22 4+ 1) (xz—1)

Example 2.26 Resolve into partial fractions:

Solution:

In this case, note that the denominator has a factor 2> + 1 which does not have real zeros.
2x A Bz +C

@+D)e-1 @-1  2+1

where A, B, C are constants.

We have, 2z = A(z* + 1) + (Bx + C)(z — 1).

Let

Whenz =1, we get A = 1.
When z = 0, we have A — C' = 0 and hence A = C = 1.

When x = —1, we have 24 — 2(C' — B) = —2, which gives B = —1.

Thus 2x 1 +1—x
us, =
(2+1)(z—-1) (z—1) 22+1

We now illustrate the situation when denominator has a real zeros with multiplicity more than one.

1
Example 2.27 Resolve into partial fractions: f#
x2(z —1)

Solution:

Let r+1 A B C
2(z—1) =z 22 -1

Then,  + 1 = Az(z — 1) + B(z — 1) + Cz?.
When z = 0, we have B = —1 and when = = 1, we get C' = 2.
When z = —1, we have 24 — 2B + C' = 0 which gives A = —2.

Z 1 —2 1 2

Thus, — @~ =~ — 4 =
o 2(rx—-1) x2+x—1
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@ Exercise - 2.9

Resolve the following rational expressions into partial fractions.

P 0. ol - 4, —
z? — a? (x —2)(x+1) (2 +1)(z —1)(z +2) (x—1)3
5 1 6. (x—1)2 . ?+r+1 g w3+ 22+1
-1 3+ 22 —5x+6 22+ 5z +6
0. T+ 12 10. 622 —x+1 0 2% + br — 11 3 T+
(x +1)%(z —2) w¥t+a?t+r+1 x?2+2r—3 (14+2)(1+a?)

2.7.3 Graphical Representation of Linear Inequalities

A straight line ax + by = c divides the Cartesian plane into two parts. Each part is an half plane. A
vertical line x = ¢ will divide the plane in left and right half planes and a horizontal line y = £ will
divide the plane into upper and lower half planes.

A point in the cartesian plane which is not on the line ax + by = ¢ will lie in exactly one of
the two half planes determined by the line and satisfies one of the inequalities ax + by < c or
ar + by > c.

To identify the half plane represented by ax + by < ¢, choose a point P in any one of the half
planes and substitute the coordinates of P in the inequality.

If the inequality is satisfied, then the required half plane is the one that contains P; otherwise the
required half plane is the one that does not contain P. When ¢ # 0, it is most convenient to take P to
be the origin.

Example 2.28 Shade the region given by the inequality = > 2.

Solution: y
First we consider equation z = 2.
It is a line parallel to y axis at a
distance of 2 units from it. This
line divides the cartesian plane into
two parts. Substituting (0,0) in the
inequality we get 0 > 2 which is
false. Hence the region which does
not contain the origin is represented
by the inequality x > 2. The shaded
region is the required solution set of
the given inequality. Since z > 2,
the points on the line x = 2 are also .
solutions.

~

@
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Example 2.29 Shade the region given by the linear inequality = + 2y > 3.

y

Proof. The line x 4 2y = 3 divides the .
cartesian plane into two half planes. To

find the half plane represented by = +
2y > 3 substitute a point in one of the
half planes in the inequality and check
whether it is satisfied. Let us substitute 2
(0,0) in the inequality. We get 0 > 3
which is false. Hence, the region given | T,
by x + 2y > 3 is the half plane which
does not contain the origin.

w

W

Example 2.30 Solve the linear inequalities and exhibit the solution set graphically:
x+y>3,2r—y<>H, —x+2y <3.

Solution:

Observe that a straight line can be drawn if we identify any two points on it. For example, (3, 0)
and (0, 3) can be easily identified as two points on the straight line z + y = 3.

Draw the three straight lines z + y = 3,22 —y = 5 and —x + 2y = 3.

Now (0, 0) does not satisfy z + y > 3. Thus, the half plane bounded by x + y = 3, not containing
the origin, is the solution set of = + y > 3.

S

Similarly, the half-plane bounded by
2x — y < 5 containing the origin repre-
sents the solution set of the 2z —y < 5. 3

The region represented by EL
—x + 2y < 3 is the half space bounded
by the straight line —z + 2y = 3 that
contains the origin.

The region common to the above Al
three half planes represents the solution
set of the given linear inequalities. 4 0 > 4 X

N

)

g
SR

i
X

iy

N

w
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@ Exercise - 2.10

Determine the region in the plane determined by the inequalities:

() z<3y, z>y.

2) y>2r, —2x+43y<6.

3) 3xr+by>45,2 >0,y > 0.

4) 2043y <35,y >2,z>5.

O) 2z+3y<6,z+4y<4, x>0,y >0.
©6)z—2y>0,2z—y<-2,2>0,y >0.
7 2z+y>8x+2y>8xr+y<6.

2.8 Exponents and Radicals

First we shall consider exponents.

2.8.1 Exponents
Letn € N,a € R. 1Then a” = a-a---a (ntimes). If m is a negative integer and the real number
a 7£ 0, then @ = —_—.

a m

Note that for any a # 0, we have T gt = ¢ = 1. 1tis also easy to see the following
a

properties.

Properties of Exponents

(i) Form,n € Z and a # 0, we have a™a" = a™"".
m

(i) For m,n € Z and a # 0, we have 4 a™ ",
an

2.8.2 Radicals
Question:
For a # 0 and r € Q, is it possible to deﬁne1 a?
First let us consider the case when » = —, n € N. Suppose there is a real number y € R such that
n

Yy = aw. Then we must have y" = a.
This problem is basically to finding inverse function of ¥y = z". In order to understand better let
us consider the graphs of the following functions:

() f(x) =2*",n eN (i) g(x) = 2> n e N
g A )
. P s
=
I A
] h(x) =lx \
3 2 10 SN
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From these two figures it is clear that the function ¢ : R — R given by g(x) = z*"*' n € Nis
one-to-one and onto and hence its inverse function from R onto R exists. But f : R — [0, c0) given
by f(z) = z**,n € N is onto but not one-to-one. However, f is one-to-one and onto if we restrict
its domain to [0, o). This is helpful in understanding nth root of a real number. So we have two cases;

Case 1 When n is even.
In this case ¥ = a is not meaningful when a < 0. So no such y exists when a < 0.
Assume that a > 0. If y is a solution to 2" = a, then —y is also solution to 2" = a.

Case 2 When n is odd.
In this case no such problem arises as in Case 1. For y € R, there is a unique x € R such that
y=aza".

Based on the above observation we define radicals as follow.

Definition 2.2

(i) Forn € N, n even, and b > 0, there is a unique a > 0 such that ™ = b.
(i1) Forn € N, n odd, b € R, there is a unique a € R such that a™ = b. In both cases a is
called the nth root of b or radical and is denoted by b'/" or /b

Q (i) If n = 2, then nth root is called the square root; if n = 3, then it is called cube
= root.
(ii) Observe that the equation 2> = a2, has two solutions z = a, x = —a; but

Va2 = |al.
(ii1) Properties of exponents given above are still valid for radicals provided each of
the individual terms are defined.

(iv) Note that for n € N and a # 0 we have

myim ) lal if niseven,
(a") _{a if 7 is odd .

For example, {/(—2)% = 16'/4 = 2, 343'/3 = 7 and (—1000)3 = —10.
For any rational r = @, m € Z,n € N, with gcd(m,n) = 1 and for a > 0 we define a” = a
n
(al/n)m'
For example, 49%/2 = (49'/2)3 = 73 = 343. But (—49)%/2 has no meaning in real number system
because there is no real number z such that 2% = (—49).

m
n

2.8.3 Exponential Function

Observe that for any @ > 0 and x € R, a” can be defined. If « = 1, we define 1* = 1. So we shall
consider o, € R for 0 < a # 1. Here a” is called exponential function with base a. Note that

a” may not be defined if @ < 0 and x = — for even m &€ N. This is why we restrict to a > 0. Also,
m
a® > 0 for all x € R. It does also satisfy the following:

Properties of Exponential Function
Fora,b>0anda #1#b
(1) ai*y =a®a? forallz, y € R,

() & =amv forallz, y € R,
a¥y
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(iii) (a*)! =a™ forallz, y € R,
(iv) (ab)’ =a*b® forallz € R,
(v) a® = 1ifand only if x = 0.

1. Let us consider f(z) = a”,z € R where a = 2.
Now f(x) = 2", x € R. Let us show that f is one-to-one and onto.

u

2
Suppose f(u) = f(v) for some u,v € R. Then, we have 2* = 2", which implies that 5 = 1,

=247V =1.
So, u — v = 0 and hence u = v. Thus f is a one-to-one function.

105 05 1 L5 2

2
15 s
L
T
/ ()5\
5 45 2 s 4 s os 1 15 2% LY T s 3 F
05
1

Figure 2.7: f(z) = 2 Figure 2.8: f(z) 2%

From the graph it is clear that values of f(x) = 2 increase as x values increase and the range
of fis (0, 00). So as 20 = 1, we have 2° > 1 for all z > 0 and 2” < 1 for all z < 0. Observe that
f:R — (0,00) is onto.

1 NN 1
2. Let us consider a = 5 Let g(z) = <§) =5 T € R.

T

1
From the graph it is clear that the values of g(z) = 5 decrease as x values increase and

g(R) = (0, 00). Also, g(0) = 1 we have g(z) > 1 forall x < 0 and g(x) < 1 forall z > 0.

Remark: Exactly same arguments as above would show that an exponential function f(x) = a®, for
any base 0 < a # 1, is one-to-one and onto with domain R and codomain (0, o).

A Special Exponential Function

Among all exponential functions, f(z) = €”, € R is the most important one as it has applications in
many areas like mathematics, science and economics. Then what is this e? The following illustration
from compounding interest problem leads to the constant e.

Ilustration
2.8.3.1 Compound Interest

interest rate

100
and ¢ is the number of years, then A = P (1 + %) n gives the total amount after ¢ years. If n = 4, then
it is compounded quarterly (the interest is added to the existing principal for three months in a year).
If n = 12, then compounded monthly, n = 365 means compounded daily. We can compound every
hour, every minute etc. We know that if P and r are fixed and the number of compounding periods in
a year increases, then the total amount also increases. Let us consider the case with P = 1, r = 1 and
t = 1. Then, we have A, = (1 + %)n We want to understand how big it gets as n gets really large.
Let us make a table with different values of n = 10, 100, 10000, 100000, 100000000.

Recall that if P is the principal, r = , n 1s the number of compounding periods in a year
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n |10 100 10000 100000 100000000
A, | 2.593742460 | 2.704813829 | 2.718145927 | 2.718268237 | 2.718281815

We notice that as n gets really large, A,, values seem to be getting closer to 2.718281815..... Actually
A,, values approach a real number e, an irrational number. 2.718281815 is an approximation to e. So
the compound interest formula becomes A = Pe™, where r is the interest rate and P is the principal
and ¢ is the number of years. This is called Continuous Compounding.

Example 2.31 (i) Simplify: (z'/2y~%)'/2; where z,y > 0.
(i1) Simplify: v/ z2 — 10z + 25.

Solution:
(i) Since z,y > 0, we have (z!/2y=3)1/2 = g1/4/y3/2,
(ii) Observe that /22 — 10z + 25 = /(z — 5)% = |z — §|.

(i) (%) = but (y*)14 = Jy].

Observe that 2/ is defined only when z is positive. But »* is defined even
when y < 0.

Now (y*)/* is a positive number whose fourth power equals y*. So it has to
be [y].

(i) (259" = 2?[y|.
(iii) Let u, v, b be rational numbers where b is positive.
Let us suppose they are not squares of rational numbers.

Then u + vv/b, u — vV/b are called conjugates.

Observe that (u + vv/b)(u — vV/b) = u? — bv? is now rational.

Thus, if an expression such as u + vv/b appears in the denominator we can
multiply both the numerator and denominator by its conjugate, namely, u — v/,
to get a rational number in the denominator.

(iv) Using (uy/a — vvb)(uy/a + vvb) = u?a — v?b, it is possible to simplify
expressions when wu+/a 4 vv/b occurs in the denominator.

V5

Example 2.32 Rationalize the denominator of ——— .

(V6 + v2)
Solution:
Multiplying both numerator and denominator by (v/6 — v/2),we get

V5 V5(V6 - v2) (v/30 — v/10)

(V6+v2)  (VB+v2)(v/6-v2) 7

Example 2.33 Find the square root of 7 — 41/3.

Solution:

Let /7 — 4v/3 = a + b\/3 where a, b are rationals.
Squaring on both sides, we get 7 — 41/3 = a? + 3b* + 2aby/3. So, a® + 3b*> = 7 and 2ab = —4.
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Therefore a = —2/b.

From a? + 3b? = 7, we get (—2/b)2 + 3b% = 7, which gives 4/b? + 3b* = 7 or 3b* — 7b> +4 = 0.
Solving for b? we get b = TEVI—45) V?_@, which gives b* = 1 or b* = 3.
Thus, b= +1lorb= j:\/%.

Since b is rational, we have b = £1 and hence the corresponding values of a are F2.
Since /7 — 4v/3 > 0, we have /7 — 4v/3 =2 — /3.

&l\ It is not always possible to express square roots of u 4+ vv/b where u, v are rationals, in
the form z + yv/b with x, y rationals. For example, the square root of 1 + /2 is not of
the form a + bv/2 with a, b rationals.

@ Exercise - 2.11

1. Simplify:
. 2 . =3 —2 . 1 275
() (125)3, (i) 167, (iii) (=1000)3, (@v) (37%)3, (v) =
3
;1
2. Evaluate (((256) /%)
3. If (#/? + 27'/2)2 = 9/2, then find the value of (z'/? — 2~'/2) for 2 > 1.
4. Simplify and hence find the value of n: 3279237" /33" = 27.
5. Find the radius of the spherical tank whose volume is 327 /3 units.
7 6
6. Simplify by rationalising the denominator. 3 i g
7. Simplif ! ! + ! + !
. Simplity — — .
3-VE VB—VT Vi-vB Vo5 V52

2
1
8. Ifx = 2+ V3 find S
x_

2.9 Logarithm

We have seen that, with a base 0 < a # 1, the exponential function f(z) = a” is defined on R having
range (0, o). We also observed that f(z) is a bijection, hence it has an inverse. We call this inverse
function as logarithmic function and is denoted by log,(.). Let us discuss this function further. Note
that if f(z) takes = to y = a”, then log,(.) takes y to x. That is, for 0 < a # 1, we have

y=a" is equivalent to log,y = =.

For example, since 3* = 81 we have log4(81) = 4. In other words, with fixed a, given a real
number y, logarithm finds the exponent x satisfying a® = y. This is useful in addressing practical
problems like, “how long will it take for certain investment to reach a fixed amount?” Logarithm is
also very useful in multiplying very small or big numbers.

Q) (i) Note that exponential function a” is defined for all x € R and ¢ > 0 and so
log,(+) defined only for positive real numbers.
(ii) Also, a’ = 1 for any base a and hence log,(1) = 0 for any base a.
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2.9.1 Properties of Logarithm

(i) a'%® =z forall z € (0, o) and log, (a¥) = y for all y € R.
(ii) Forany z,y > 0, log,(zy) = log, « + log,y. (Product Rule)

(iii) For any =,y > 0, log, (£> = log,r —log,y. (Quotient Rule)
)

(iv) Forany x > Oandr € R, log, 2" = rlog,x. (Power Rule)
log, =
log, b

a

(v) Forany x > 0, with @ and b as bases, log, v = (Change of base formula.)

Proof. Since exponential function with base a and logarithm function with base a are inverse of each
other,

(i) follows by using the definitions.

(ii) For z,y > 0 let log, z = u, log, y = v, and log,(ry) = w. Rewriting these in the exponential
form we obtain ¢ = x, ¥ = y, and, a* = xy. So, a® = xy = a“a’ = a**?; thus w = u + v.
Thus, we obtain log, (zy) = log, = + log, y.

(iii) Let log, x = u, log,y = v, and log, ¥ — . Then a* = x, a’ = yanda” = L Hence,
Y Y

u

T a C
a¥ = — = — = a"¥; which implies w = u — v.
y o

Thus, we obtain log, (£> = log, x —log, y.
)

(iv) Letlog, x = u. Then a" = z and therefore, 2" = (a")" = a™. Thus, log, " = ru = rlog, .
(v) Let log,x = v. We have b = z. Taking logarithm with base a on both sides we get
log, 0¥ = log, x.
On the other hand log, b* = v log, b by the Power rule. Therefore, v log, b = log, =.
log,

log, b

a

Hence log, v = , b > 0. This completes the proof.

Remark:

(1) If a = 10, then the corresponding logarithmic function log, « is called the common logarithm.

(i) If @ = e,(an irrational number, approximately equal to 2.718), then the corresponding

logarithmic function log, x is called the natural logarithm. It is denoted by Inxz. These

above particular cases of logarithmic functions are used very much in other sciences and

engineering. Particularly, the natural logarithm occurs very naturally. When we write log x we
mean log, .

(iii) If a = 2, then the corresponding logarithmic function log, x called the binary logarithm, which

is used in computer science. 0
(iv) Observe that log,35 = log,(7 x 5) = log,7 + log,5; logag = log, 50 —
log, 3.
1 50
log, 227 = xlog, 22; log; 50 = 25102
log,y 5

(v) Observe the graph of the logarithmic and exponential functions.
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Figure 2.9

Example 2.34 Find the logarithm of 1728 to the base 24/3.

Solution:

Let log,, 51728 = .

Then we have (21/3)® = 1728 = 26 33 = 26 (1/3)°.
Hence, (2/3)* = (2v/3)°.

Therefore x = 6. That is, log,, 5 1728 = 6.

Example 2.35 If the logarithm of 324 to base a is 4, then find a.

Solution:
We are given log, 324 = 4, which gives
a' = 324 = 3* (v/2). Therefore a = 3v/2.

75 5 S
E le 2.36 P log — — 2log = + log — = log 2.
xample 2.36 Prove log 16 0g9 + log 513 og

Solution:
Using the properties of logarithm, we have
75 5 32
log 6 2log 9 + log 73 = log 75 —log 16 — 2log 5 4 21og 9 + log 32 — log 243. (By Quotient
rule)
= log 3 + log 25 — log 16 — log 25 + log 81 + log 16 + log 2 — log 81 — log 3

= log 2.

7
Example 2.37 If log, x + log, = + logs * = 5 find the value of z.

Solution:
Note that z > 0.

log, z + log, x + logs v = 3 becomes

1 1 1 7

=—_. h fb 1

log, 2 u log, 4 u log, 16 2 (change of base rule)
1 1 1 7 T T

Thus g—k%—i-@ = §Wherea:10g12. Thatis@ =5
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1 1
Thus, a = 3 and so, log, 2 = 3 which gives Tz =9

Thus, z = 22 = 4.

Example 2.38 Solve 2°%3% = 9,

Solution:

Let logs x = y.

Then z = 3Y and so, 3v* =9,

Thus, y2 = 2, which implies y = v/2, — /2. Hence, z = 3V2, 3~V2

Example 2.39 Compute logs; 5 log,s 27.

Solution:
= logs 5 x 3log,; 3 (by exponent rule)
3 _ 3

o -
= 3logys 5 = logs 25 ~ 2logs5  2°

Example 2.40 Given that log,,2 = 0.30103, log,, 3 = 0.47712 (approximately), find the number
of digits in 28.3'2,

Solution:

Suppose that N = 2832 has n + 1 digits. Then N can be written as 10" x b where 1 < b < 10.
Taking logarithm to the base 10, we get

log N = log(10™ b) = nlog 10 + logb = n + log b.

On the other hand,

log N = 1og 2832 = 8log2 + 12log 3 = 8 x 0.30103 + 12 x 0.47712 = 8.13368.

Thus, we get n + log b = 8.13368. Since 1 < b < 10 the number of digits is 9.

Exercise - 2.12

1. Letb > 0 and b # 1. Express y = b” in logarithmic form. Also state the domain and range of the
logarithmic function.

2. Compute log, 27 — log,- 9 .
3. Solve logg = + log, x + log, v = 11.
4. Solve log, 287 = 2loe28,
9 19 a+b 1
5. If a®* 4+ b* = Tab, show that log = §(loga + logb).
2 2 2
6. Prove log « +log — + log — = 0.
be ca e ab 5 31
7. P that log 2 + 16log — + 12log — + 7log — = 1.
rove that log 2 + og15+ 0g24+ og80
8. Prove log,> a logy: b log,. ¢ = 3.
) 5 n(n+1)
9. Prove loga + loga® +loga® + - -- +loga” = ——— log a.

2
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1 1 1
0. Tf ogz logy logz
y—z z—x -y

, then prove that zyz = 1.

11. Solve log, z — 310g% x = 6.
12. Solve log; (2% — 6z + 65) = 2.

2.10 Application of Algebra in Real Life

Algebra is used in many aspects of life. Financial planning is an area in daily life where algebra is
used. Algebra concepts are used to calculate interest rates by bankers and as well as for calculating
loan repayments. They are used to predict growth of money. Physical fitness is another area where
calculations are made to determine the right amount of food intake for an individual taking into
consideration such as the height, body mass of the person etc. Doctors use algebra in measuring
drug dosage depending on age and weight of an individual. Architects depend on algebra to design
buildings while civil engineers use it to design roads, bridges and tunnels. Algebra is needed to convert
items to scale so that the structures designed have the correct proportions. It is used to programme
computers and phones . Let us see some examples. Because of the extra-ordinary range of sensitivity
of the human ear (a range of over 1000 million millions to one), it is useful to use logarithmic scale
to measure sound intensity over this range. The unit of measure decibel is named after the inventor of
the telephone Alexander Graham Bell.

If we know the population in the world today, the growth, which is rapid, can be measured by
approximating to an exponential function. The radioactive carbon-14 is an organism which decays
according to an exponential formula.

Exercise - 2.13

Choose the correct or the most suitable answer.

1. If |z + 2| <9, then z belongs to
(1) (=00, =7) 2) [-11,7] (3) (—o0,=7)U[ll,00) (4 (—11,7)

2. Given that x, y and b are real numbers x < y, b > 0, then

(1) xb<yb (2) xb>yb 3) xb<uyb @ >4
|z — 2|
3. If — > 0, then z belongs to
x‘ —
(1) [2,00) (2 (2,00) (3) (-00,2) 4) (—2,00)
4. The solution of bx — 1 < 24 and bz + 1 > —241is
5. The solution set of the following inequality |z — 1| > |z — 3| is
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The value of log, 5512 is
(1) 16 (2) 18 3) 9 4 12

. The value of log, 5 is

1 =2 2 -8 3) —4 @ -9

If log /7 0.25 = 4, then the value of x is
(1) 0.5 2) 25 3) 1.5 4) 1.25

The value of log, b log, ¢ log,.a is
1 2 @ 1 3 3 “ 4

If 3 is the logarithm of 343, then the base is
(H 5 2 7 (3) 6 @ 9

Find a so that the sum and product of the roots of the equation
227 + (a — 3)x + 3a — 5 = 0 are equal is

1 1 @ 2 3 0 4 4

If a and b are the roots of the equation 22 — kx + 16 = 0 and satisfy a? + b? = 32, then the value
of kis

(1) 10 2 -8 3) -8,8 4) 6

The number of solutions of 2 + |z — 1| = 1 is
M 1 @ 0 3) 2 @ 3

The equation whose roots are numerically equal but opposite in sign to the roots of
32* —bx —7=0is
(1) 322=52—-7=0 () 32°+5x—7=0 B) 322-52+7=0 4) 32°+2—-7

If 8 and 2 are the roots of 2% + az + ¢ = 0 and 3, 3 are the roots of 2 + dz + b = 0, then the roots
of the equation 2% + ax + b = 0 are

1 1,2 @ -11 3) 9,1 @ -1,2

If a and b are the real roots of the equation 2> — kx + ¢ = 0, then the distance between the points
(a,0) and (b,0) is

(1) VE? —4c 2) Va2 —c (3) Ve — k2 @) Vk—8c
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kx 9 1

17. If = then the value of k i
7 (x+2)(z—1) $+2+x—1 en the value of k is

(1 1 o 5 s -

18. If 34:2;2—22 = ﬁ + w%l, then the value of A + B is

n @ 7 3 3 “4)

win

19. The number of roots of (z + 3)* + (z + 5)* = 16 is
(1 4 2 2 3 3 @ 0

20. The value of log; 11 - log;; 13 - log,5 15 - log;5 27 - log,y, 81 is
1 1 @ 2 3 3 “ 4
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ICT CORNER-2(a)

Expected Outcome =

Step-1
Open the Browser and type the URL Link given below (or) Scan the QR Code.

Step-2
GeoGebra Work Sheet called “Hill and Flower Puzzle” will appear. Puzzle Detail

(a)You have some flowers in your hand. If you climb up the hill the flowers will be doubled
and also, when you climb down the hill it will be doubled. (b)At the top of each hill there
is a idol of god where you have to put some flowers. (c)you have to climb and put flowers
in all the three idols in each hill top.

finally, when you reach the top of the third hill you have to put all the flowers in hand
such a way that all the three Idols get equal flowers. How many flowers you should take
and how many flowers you should put on each Idol?

Step-3

You can think of the no. of flowers taken by you as X value and no. of flowers offered
to the god as Y value. And adjust the sliders in the page. Simply by thinking you cannot
solve the puzzle.

Step—4
Now is the time for you to recognise the need of algebra. Think of the way to use Algebra.
Otherwise Click on the box Show Calculation. Algebra calculation at each level is seen.
Now you have to Identify the equation to solve the puzzle. Note: The result will be a ratio.
Step-1
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Browse in the Ilink Hill and Flower Puzzle:
https://ggbm.at/KmrESvHsor Scan the QR Code.

ICT CORNER-2(b)

Expected Outcome =

Type your own vwues Tor a. B, &
S YW—E __ -b- Pl =
2a \ | 2a

a3 b4 -5
Substitute: a=3; bud; c=5

e L Lkt & St JR | Sl ()l
L EE] ) 33

U, e, A
— o o 002

o | Statn
=079, -2.12 =7" Denotes Undefined o e L

.Step-1
i PH
. 2 P ==
Solve : ar” + bae + ¢ = () JREE S b SN ]
250
Type your own values fora, b, c -
oo bt VF—dac b VF—dac -
a3 b4 c-5 A 2
150
100
- 50
8 _].Swp-‘l
I___gShowSteD-:? 50 0 0 0
| |ShowStep-3
-50
| |Show Answer

Step-1

Open the Browser and type the URL Link given below (or) Scan the QR Code. GeoGebra
work book named High School Algebra will open. In that several work sheets are given,
choose any worksheet you want, for example open the work sheet “Quadratic Equation”
solving by formula.

In the work sheet you can enter any value between —20 and 20 for a, b and c. You yourself
work out the answer using the formula given.(? mark indicates Undefined answer

Step-2

Now click on the answer to check. You can click the check box one by one to see the steps.
Finally, onright hand side click Show Graph to view the graph. Compare the graph with your
answer.)
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(The curve where it cuts the x-axis is the answer).

Step-3

32’4+ 4x+ —5=0

280
Type your own values fora, b, c -
—b+ VBT — dac —b — /BT —dac al
- = S = e
a3 b4 c-5
Substitute: a=3; b=4; c=-5 150
_ —(4)+ J@)*F—43.-5 _ =@ - /(@ =43.=5 100
= 2.3 = 2.3
- 50
—4+ V78 —4— V76 :.‘/]5“"”
pivga 6 P G |/ |Show Step-2

[V]showstep-3

| Show Ans

*Pictures are only indicatives.

Browse in the link Hill and Flower Puzzle:
https://ggbm.at/N4kX9QJqor Scan the QR Code.
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Chapter Trigonometry

“When I trace at my pleasure the windings to and fro of the heavenly bodies,
I no longer touch the earth with my feet”

Ptolemy

3.1 Introduction

Trigonometry is primarily a branch of Mathematics that studies relationship
involving sides and angles of triangles. The word trigonometry stems from
the Greek word trigonon which means triangle and metron which means to
measure. SO, literally trigonometry is the study of measuring triangles. Greek
mathematicians used trigonometric ratios to determine unknown distances. The
Egyptians on the other hand used a primitive form of trigonometry for building
Pyramids in second millinium BC(BCE). Aristarchus (310-250 BC(BCE)) used 1 4\ 1A
trigonometry to determine the distances of Moon and Sun. @ St i IR
Eratosthenes (276-195 BC(BCE)) wast he f irst p erson to c alculate th AN .Q\ / =R
e ea rth’s circumference, whichhedidbyapplyingameasuringsystemusing stadia, a ~ Plelerny of Alexandaria (AD %0-163)
Ptolemy of Alexandaria (AD(CE) 90-168) standard unit of measurement during that
period. The genera principles of Trigonometry were formulated by the Greek astronomer Hipparchus
(190-120 BC(BCE)) and heis credited as the founder of trigonometry. His ideas were used by Ptolemy of
Alexandria (AD 90-168) leading to the devel opment of Ptolemy theory of Astronomy. The most significant
development of Trigonometry in ancient times was in India. Indian Mathematician and Astronomer
Aryabhata (AD(CE) 476-550) defined sine, cosine, inverse cosine, inverse sine and he gave mathematical
results in the form of 108 verses which included a formula for the area of a triangle.Mathematicians
Brahmagupta (598 AD(CE)), Bhaskara | (600 AD(CE)) and Bhaskara Il (1114 AD(CE)) are other
Ancient Indians who contributed significantly to develop Trigonometry. Trigonometry was developed asa
separate branch of Mathematics through the works of Johann Bernoulli (1667-1748) and Leonhard Euler
(1707-1783). Euler established the fundamental results connecting trigonometric functions and complex
exponential. Joseph Fourier (1768-1830) made important contribution to the study of trigonometric series.
Hisinvention of Fourier series has awide range of applications especially in vibration analysis, electrical
engineering, acoustics, optics, signal processing, image processing and quantum mechanics. In modern
times, trigonometric functions are devel oped as mathematical functions of angular magnitudes, through the
medium of which many kinds of geometrical and algebraic investigations are carried out in every branch
of Mathematics and applications. Our GPS system in cars and mobile phones is based on trigonometric
calculations. Advanced medical scanning procedures such as CT and MRI, used in detecting tumors,
involve sine and cosine functions.
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(Learning Objectives )

At the end of this chapter, students are expected to know

e the limitations of right triangle trigonometric ratios as they involve acute angles.

e the necessity for the study of radian measure of an angle and its advantage over degree
measure.

how unit circle is used to define trigonometric functions of real numbers.

various trigonometric identities, their relationships and applications.

the principal solution and general solution of a trigonometric equation.

how to solve trigonometric equations.

law of sines, law of cosines in triangles and their applications in real life situations.

how to solve an oblique triangle using law of sines and law of cosines.

application of Heron’s formula and how to compute area of a triangle without finding its
altitude.

\_° the existence of inverse trigonometric functions and their domains and ranges. )

Let us recall the basics of trigonometric ratios using acute angles and their properties, which were
discussed in earlier classes.

3.2 A recall of basic results

In earlier classes, we have learnt trigonometric ratios using a right triangle and proved trigonometric
identities for an acute angle. One wonders, how the distance between planets, heights of Mountains,
distance between far off objects like Earth and Sun, heights of tall buildings, the speed of supersonic
jets are measured or calculated. Interestingly, such distances or heights are calculated applying
the trigonometric ratios which were derived for acute angles. Our aim is to develop trigonometric
functions defined for any real number and use them in all branches of mathematics, in particular, in
calculus. First, let us recall the definition of angle and degree measure of an angle.

3.2.1 Angles

The angle AOB is a measure formed by two rays OA
and OB sharing the common point O as shown in the
Figure 3.1. The common point O is called the vertex of the
angle. If we rotate the ray OA about its vertex O and takes
the position OB, then OA and OB respectively are called
the initial side and the terminal side of the angle produced.
An anticlockwise rotation generates a positive angle (angle
with positive sign), while a clockwise rotation generates a Verteg Initial Side
negative angle (angle with negative sign).

>V

Figure 3.1

& One full anticlockwise (or clockwise) rotation of OA back
to itself is called one complete rotation or revolution.

3.2.2 Different Systems of measurement of angle
There are three different systems for measuring angles.

(i) Sexagesimal system
The Sexagesimal system is the most prevalent system of measurement where a right angle
is divided into 90 equal parts called Degrees. Each degree is divided into 60 equal parts called
Minutes, and each minute into 60 equal parts called Seconds.
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The symbols 1°, 1’ and 1” are used to denote a degree, a minute and a second respectively.
(i) Centesimal system
In the Centesimal system , the right angle is divided into 100 equal parts, called Grades;
each grade is subdivided into 100 Minutes, and each minute is subdivided into 100 Seconds.
The symbol 17 is used to denote a grade.
(iii) Circular system
In the circular system , the radian measure of an angle is introduced using arc lengths
in a circle of radius r. Circular system is used in all branches of Mathematics and in other
applications in Science. The symbol 1¢ is used to denote 1 radian measure.

3.2.3 Degree Measure

The degree is a unit of measurement of angles and is represented by the symbol °. In degrees, we
split up one complete rotation into 360 equal parts and each part is one degree, denoted by 1°. Thus,
1° is 1/360 of one complete rotation. To measure a fraction of an angle and also for accuracy of
measurement of angles, minutes and seconds are introduced. One minute (1") corresponds to 1/60
of a degree and in turn a second (1”) corresponds to 1/60 of a minute (or) 1/3600 of a degree.

We shall classify a pair of angles in the following way for better understanding and usages.

(i) Two angles that have the exact same measure are called congruent angles.

(i1) Two angles that have their measures adding to 90° are called complementary angles.
(ii1) Two angles that have their measures adding to 180° are called supplementary angles.
(iv) Two angles between 0° and 360° are conjugate if their sum equals 360°.

El@ (i) The concept of degrees, minutes and seconds, is analogous to the system of time
measurement where we think of a degree representing one hour.
(i1) Observe that
59.0854° = 59° + 0.0854°

/

60
0.0854° = .0854° x T = 5.124'
5.124" =5 +0.124'

!

60
0.124" = 0.124" x = 7.44"

1

Thus, 59.0854° = 59°5'7.44"

(iii) Also notice that 34°51'35" = 34.8597°
and 90° — 36°18'47" = 53°41'13"

3.2.4 Angles in Standard Position

90° An angle is said to be in standard position if its
74 vertex is at the origin and its initial side is along the
QI QI positive x-axis. An angle is said to be in the first
90°<0<180° | 0°<B<90° quadrant, if in the standard position, its terminal
180° % 5 > 0° side falls in the first quadrant. Similarly, we can
180° <8 <270° 270° <8 < 360° define for the other three quadrants. Angles in
QIII Qv standard position having their terminal sides along
'y the z-axis or y-axis are called quadrantal angles.
270° Thus, 0°,90°, 180°,270° and 360° are quadrantal
angles.

Figure 3.2

El The degree measurement of a quadrantal angle is a multiple of 90°.
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3.2.5 Coterminal angles

One complete rotation of a ray in the anticlockwise direc-
tion results in an angle measuring of 360°. By continuing
the anticlockwise rotation, angles larger than 360° can be
produced. If we rotate in clockwise direction, negative
angles are produced. Angles 57°, 417° and —303° have
the same initial side and terminal side but with different

A

VA %\&

Initial Side

amount of rotations, such angles are called coterminal
angles. Thus, angles in standard position that have the
same terminal sides are coterminal angles . Hence, if o and
( are coterminal angles, then § = «a + k(360°), k is an
integer. The measurements of coterminal angles differ by
an integral multiple of 360°.

For example, 417° and —303° are coterminal because
417° — (=303°) = 720° = 2(360°).

I

e
S

(i) Observe that 45°, —315° and 405° lie in the first quadrant.

y

Figure 3.3

(ii) The following pairs of angles are coterminal angles (30°,390°); (280°,1000°) and

(—85°,275°).

3.2.6 Basic Trigonometric ratios using a right triangle

We know that six ratios can be formed using the three lengths a, b, ¢
of sides of a right triangle ABC'. Interestingly, these ratios lead to the
definitions of six basic trigonometric functions.

First, let us recall the trigonometric ratios which are defined with
reference to a right triangle.

opposite side
hypotenuse

_adjacent side

sinf = osf =

hypotenuse

With the help of sinf and cosf, the remaining trigonometric

ratios tan 6, cot 6, cosec ¢ and sec # are determined by using the relations

sin 1
tanf)l = —— . cosec = —— secl) = ——
cosf’ sinf ’ 0s6’

A
[*]
Z Y
2 Of@j)
8
o a 0
B adjacent side C
Figure 3.4
cos
ot = .
sin 0

3.2.7 Exact values of trigonometric functions of widely used angles

Let us list out the values of trigonometric functions at known angles.

0 0° | 30° | 45° | 60° 90°
1 1 | V3
i - | —= | — 1
sinf | O 5 7 5
cosf | 1 \/_§ L 1 0
2 | V2| 2
1
tanf | 0 | — 1 v/3 | undefined
V3

ElQ (1) The values given above are all exact.

(i1) We observe that sin 30° and cos 60° are equal. Also sin 60° and cos 30° are equal.
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(iii)) The value of reciprocal ratios namely cosecant, secant and cotangent can be obtained
using the above table.
(iv) The result cos 90° = 0 does not allow us to define tan 90° and sec 90°.
(v) Similarly sin 0° = 0 does not permit us to define cosec 0° and cot 0°.

3.2.8 Basic Trigonometric Identities

A trigonometric identity represents a relationship that is always true for all admissible values in the

domain. For example secf =
cos 6

is true for all admissible values of #. Hence, this is an identity.

However, sinf = % is not an identity, since the relation fails when § = 60°. Identities enable us to
simplify complicated expressions. They are the basic tools of trigonometry which are being used in
solving trigonometric equations. The most important part of working with identities, is to manipulate

them with the help of a variety of techniques from algebra.
Let us recall the fundamental identities (Pythagorean identities ) of trigonometry, namely,

cos?h +sin’h =1
sec? —tan’6 =1

cosec?d — cot?’h =1

El) (i) sin?#@ is the commonly used notation for (sin 9)2 , likewise for other trigonometric
ratios.

(i) sec?d — tan?# = 1 is meaningless when # = 90°. But still it is an identity and true for

all values of  for which sec § and tan 6 are defined. Thus, an identity is an equation that

is true for all values of its domain values.

(iii)) When we write %, we understand that the expression is valid for all values of §

for which 1 4 cos @ # 0.

tanG—i—sec@—l_l—i—sin@
tanf —sec +1  cosf

Example 3.1 Prove that
Solution:

tan + sec — 1 B tan @ + sec — (Secze—tan20)

tanf —secd +1 tanf —secf + 1
(tan @ + sec) [1 — (secd — tan )]

tan@ — secf + 1
1 +sind
cosf

= tanf + secl =

Example 3.2 Prove that (sec A — cosecA) (1 + tan A + cot A) = tan Asec A — cot A cosecA.

Solution:

LHS. :( 1 1 >|:1+SHIA cos A

cosA  sinA
sin® A — cos® A ,
" sinAcos?A -
sinA  cosA  sin® A — cos® A
cos2A  sin?A  sin®Acos? A

cosA  sinA

RHS. = ...(ii)

From (i) and (ii), we get the required result.
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. If sin 6 + cos @ = m, show that cos® 6 + sin® 6 =
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Example 3.3 Eliminate 6 from a cos = b and csin§ = d, where a, b, ¢, d are constants.

Solution:
Squaring and adding accos = bc and acsin § = ad, we get

a’c® = b2 + a’d?.

Exercise - 3.1

. Identify the quadrant in which an angle of each given measure lies

(1) 25° (i) 825°  (iii) —HH° (iv) 328° (v) —230°

. For each given angle, find a coterminal angle with measure of 6 such that 0° < 6 < 360°

(1) 395° (i) 525° (iii) 1150° (iv) —270° (v) —450°

. Ifacosf —bsinf = ¢, show that asin® + bcost = +va? + b2 — 2.

4—-3(m2—1)°

1 , where m? < 2.

cos*a  sinta

I + = 1, prove that

cos?3  sin?p3

1.

4 i a4
- . . . .., COS S
() sin® o + sin? f = 2sin? asin® B (i) 26 + - Qﬁ =
cos?a  sin®a

2sin o 1 —cosa + sin«
, then prove that =y

Ify =
y 1+sina

1+ cosa + sin «

e =30 jeos™ 0,y =307 (sin®@and 2 = Y 07 cos™ Osin®" 0,0 < 0 < g, then show that

ryz=r+y+z

1
[Hint: Use the formula 1 +z + 2> + 2% + ... = T where |z| < 1].
—x

If tan® @ = 1 — k2, show that sec 6 + tan® 6 cosec § = (2 — k2)3/2. Also, find the values of k for
which this result holds.

If sec 4 tan 6 = p, obtain the values of sec 6, tan 6 and sin 6 in terms of p.

If cot (1 + sin§) = 4m and cot § (1 — sin @) = 4n, then prove that (m* — n2)2 = mn.

If cosec @ — sinf = o and sec @ — cos@ = b>, then prove that a’b? (a2 + b2) =1.

Eliminate ¢ from the equations asecf — ctanf = b and bsect + dtanf = c.

3.3 Radian Measure

Initially right triangles were used to define trigonometric ratios and angles were
measured in degrees. But right triangles have limitations as they involve only
acute angles. In degrees a full rotation corresponds to 360° where the choice of
360 was made thousands of years prior to the Babylonians. They might have
chosen 360 based on the number of days in a year. But it does have the nice
property of breaking into smaller angles like 30°, 45°, 60°, 90°and 180°. In 17th
century,

trigonometry was extended to Physics and Chemistry where it required trigonometric functions
whose domains were sets of real numbers rather than angles. This was accomplished by using
correspondence between an angle and length of the arc on a unit circle. Such a measure of angle is
termed as radian measure . For theoretical applications, the radian is the most common system of
angle measurement. Radians are common unit of measurement in many technical fields, including
calculus. The most important irrational number 7 plays a vital role in radian measures of angles. Let
us introduce the radian measure of an angle.
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(" Definition 3.1 )

The radian measure of an angle is the ratio of the arc length it

J
subtends, to the radius of the circle in which it is the central " s
angle. ‘é
Consider a circle of radius r. Let s be the arc length
subtending an angle 6 at the centre. W'

arc length s .
Then, = —g = — radians. Hence, s = rf. .
\ radius r Figure 3.5 )

EIQ (i) All circles are similar. Thus, for a given central angle in any circle, the ratio of the

intercepted arc length to the radius is always constant.

(ii)) When s = r, we have an angle of 1 radian. Thus, one radian is the angle made at the
centre of a circle by an arc with length equal to the radius of the circle.

(iii) Since the lengths s and r have same unit, 6 is unitless and thus, we do not use any
notation to denote radians.

(iv) 6 = 1 radian measure, if s = r
6 = 2 radian measure, if s = 2r
Thus, in general § = k radian measure, if s = kr.
Hence, radian measure of an angle tells us how many radius lengths, we need to sweep
out along the circle to subtend the angle 6.

(v) Radian angle measurement can be related to the edge of the unit circle. In radian system,
we measure an angle by measuring the distance travelled along the edge of the unit circle
to where the terminal side of the angle intersect the unit circle .

3.3.1 Relationship between Degree and Radian Measures

We have degree and radian units to measure angles. One measuring unit is better than another if it can
be defined in a simpler and more intuitive way. For example, in measuring temperature, Celsius unit
is better than Fahrenheit as Celsius was defined using 0° and 100° for freezing and boiling points of
water. Radian measure is better for conversion and calculations. Radian measure is more convenient
for analysis whereas degree measure of an angle is more convenient to communicate the concept
between people. Greek Mathematicians observed the relation of m which arises from circumference
of a circle and thus, 7 plays a crucial role in radian measure.

In unit circle, a full rotation corresponds to 360° whereas, a full rotation is related to 27 radians,
the circumference of the unit circle. Thus, we have the following relations:

27 radians = 360°, which reduces to 7 radians = 180°.

1 o
Thus, 1radian = @ or 1°= T radians.
180

T
) 180\ ° o 7T .
x radian = | —— or x° = —— radians.
T 180

Observe that the scale used in radians is much smaller than the scale in degrees. The smaller scale
makes the graphs of trigonometric functions more visible and usable. The above relation gives a way
to convert radians into degrees or degrees into radians.

EIQ (i) The ratio of the circumference of any circle to its diameter is always a constant. This
constant is denoted by the irrational number 7.

(ii)) Mark a point P on a unit circle and put the unit circle on the number line so that P

touches the number 0. Allow the circle to roll along the number line. The point P will
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touch the number 27 on the number line when the circle rolls to one complete revolution
to the right.
(iii) If the unit of angle measure is not specified, then the angle is understood to be in radians.
(iv) Consider a sector of a circle with radius r. If # is the central angle of the sector, then

mr? :
( ) 6 in degree measure

360°
Area of the sector = )
'/TT'2 9 _ r 9 . di
(Tw > =5 in radian measure

Clearly, the calculation in radian measure is much easier to work with.

22
(v) The values of m and — correct to four decimal places are 3.1416 and 3.1429

respectively. Thus, 7 and - are approximately equal correct upto two decimal places.

H 22
ence, T &~ —.
7

(vi)
1 radian ~ 57°17'45” and 1° ~ 0.017453 radian

1 = (ﬁ) radian ~ 0.000291 radian.

1" = (WWOMO) radian ~ 0.000005 radian.

(vii) The radian measures and the corresponding degree measures for some known angles
are given in the following table

T T T T 3T
Radi 1 0174 — — — — — 2
adians | O 0.017453 A 1 5 5 s 5 T
Degrees | 0° | 57°17'45" 1° 30° | 45° | 60° | 90° | 180° | 270° | 360°

(viii) sin90° = 1 but sin 90 # 1 (in radian measure).

Example 3.4 Convert (i) 18° to radians (ii)—108° to radians.

Solution:
Now, 180° = 7 radians gives 1° = % radians
@) 18° = % x 18 radians = 17T—0 radians
3
(ii) — 108° = % X (—108) radians = —?ﬂ radians.

Example 3.5 Convert (i) g radians to degrees (ii) 6 radians to degrees.
Solution:

We know that 7 radians = 180° and thus,

(o}

@) % radians = = 36°

180 ° 7 x 180 ° 7\°
(i1) 6 radians ( - X 6) ( % X 6) (3 311)
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Example 3.6 Find the length of an arc of a circle of radius 5 ¢m subtending a central angle
measuring 15°.

Solution:
Let s be the length of the arc of a circle of radius r subtending a central angle 6.
Then s = r6.

T T
h e ]_ ° = 1 _— — 1
We have, 6 5 5 x 180~ 19 radians
s 5%
h = 1 = _— = —
So that, s rf gives s =5 X 5 15 cm

El“j In the product 76 , @ must always be in radians.

Example 3.7 If the arcs of same lengths in two circles subtend central angles 30° and 80°, find the
ratio of their radii.

Solution:
Let r; and 75 be the radii of the two given circles and [ be the length of the arc.

0, = 30° = % radians

4
6, = 80° = g radians

Given that [ = 0 = ry0
s 4

Thus, —r; = —

us 6“ 9 T2
a_ e which implies 7, : 75 = 8 : 3.
T 3

Exercise - 3.2

. Express each of the following angles in radian measure:
(1) 30° (i) 135° (iii)) —205° (iv) 150° (v) 330°.
. Find the degree measure corresponding to the following radian measures

2 7 10

)5 () )= @) O

. What must be the radius of a circular running path, around which an athlete must run 5 times in
order to describe 1 km?

. In a circle of diameter 40 c¢m, a chord is of length 20 c¢m. Find the length of the minor arc of the
chord.

. Find the degree measure of the angle subtended at the centre of circle of radius 100 ¢m by an arc
of length 22 cm.

. What is the length of the arc intercepted by a central angle of measure 41° in a circle of radius
10 ft?

. If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of
their radii.
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8. The perimeter of a certain sector of a circle is equal to the length of the arc of a semi-circle having
the same radius. Express the angle of the sector in degrees, minutes and seconds.
9. An airplane propeller rotates 1000 times per minute. Find the number of degrees that a point on
the edge of the propeller will rotate in 1 second.
10. A train is moving on a circular track of 1500 m radius at the rate of 66 km/hr. What angle will it
turn in 20 seconds?
11. A circular metallic plate of radius 8 ¢m and thickness 6 mm is melted and molded into a pie (a
sector of the circle with thickness) of radius 16 ¢m and thickness 4 mm. Find the angle of the
sector.

3.4 Trigonometric functions and their properties

3.4.1 Trigonometric Functions of any angle in terms of Cartesian coordinates

We have studied the principles of trigonometric ratios in the lower classes using 4
acute angles . But we come across many angles which are not acute. We shall
extend the acute angle idea and define trigonometric functions for any angle. .
The trigonometric ratios to any angle in terms of radian measure are called Y
trigonometric functions. o
Let P(z,y) be a point other than the origin on the terminal side of an angle
0 in standard position . Let OP = r. Thus, r = /2% + y? v
The six trigonometric functions of § are defined as follows:

Figure 3.6

T
sinf = y and cosf = —.
r r

Using this, we have tan § = g,a& # 0; cot = f,y = 0; cosec 0 = z,yyé 0; sec = z,x # 0.
x Y Y x

@ (i) Since |z| < r, |y| < r, we have |sinf] < 1 and |cos @] < 1.
(i1) In the case of acute angle, the above definitions are equivalent to our earlier definitions
using right triangle.
(iii)) The trigonometric functions have positive or negative values depending on the quadrant
in which the point P(x,y) on the terminal side of 6 lies.
(iv) The above definitions of trigonometric functions is independent of the points on the
terminal side of the angle. (verify!)

Trigonometric ratios of Quadrantal angles

Let us recall that, an angle in its standard position for which the ©1)
terminal side coincides with one of the axes, is a Quadrantal angle.
We shall find the trigonometric ratios for the quadrantal angles.

P(x,y)

r=1 .
P(cosb, sind
y (cos6, sinb)

0

Consider the unit circle z* + 3> = 1. Let P(z, y) be a point on the (1,0 ST Q0
unit circle where the terminal side of the angle ¢ intersects the unit
circle. .

Then cosf = 1=72 (z-coordinate of P) and oD

sinf = % =y (y-coordinate of P) Figure 3.7

Thus, the coordinates of any point P(z,y) on the unit circle is P(cos®,sin@). In this way, the
angle measure 6 is associated with a point on the unit circle.

The following table illustrates how trigonometric function values are determined for a Quadrantal
angles using the above explanation.
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Exact values of trigonometric functions of quadrantal angles.

Quadrantal | Corresponding point on the Unit circle | cosine value sine value
angle P(z,y) = P(cosf,sinf) cos 0 sin 0

6 =0° (1,0) = (cos0°%,sin 0°) cos(0° = sin0° =0

6 = 90° (0,1) = (cos90°, sin 90°) cos 90° = sin90° =1

0 =180° | (—1,0) = (cos180°,sin 180°) cos 180° = —1 | sin 180° = 0
6 =270° | (0,—1) = (cos270°,sin 270°) cos270° =0 | sin270° = —1
0 =360° | (1,0) = (cos360°,sin 360°) cos360° =1 | sin360° =0

El@ (i) Observe that x and y coordinates of all points on the unit circle lie between —1 and 1.
Hence, —1 < cosf < 1, —1 <sinf < 1, no matter whatever be the value of 6.

(i) When # = 360°, we have completed one full rotation. Thus, the terminal side coincides
with positive x- axis. Hence, sine has equal values at 0° and at 360°. Cosine and other
trigonometric functions also follow it.

(iii) If two angles differ by an integral multiple of 360° or 27, then each trigonometric
function will have equal values at both angles.

(iv) Using the values of sine and cosine at quadrantal angles, we have the following
generalization geometrically.

At Quadrantal angle | Justification Generalization
sin0 =0 sin(0+2nm)=0;n€Z |sinfd=0=0=nm;neZ
sinm =0 sin (7 +2nm) =0;n € Z
cosg =0 cos(%—i—er):O;nGZ cos =0=0=2n+1)5;necZ
cos?’?’rzo 608(37”+2n7r):0;n€Z
tan0 =0 tan(0+2nm) =0;n€Z |tanl=0=0=nmncZ
tanm =0 tan (7 4 2n7m) = 0;n € Z
(v) tan# is not defined when cos# = 0 and so, tan @ is not defined when 6 = (2n + l)g,
n € Z.
3.4.2 Trigonometric Functions of real numbers
VA For applications of trigonometry to the problems in higher
5 mathematics including calculus and to problems in physics
/? t and chemistry, scientists required trigonometric functions
) “(\Q(‘f)/\' ! of real numbers. This was skillfully done by exhibiting
- ] K - a correspondence between an angle and an arc length
) 0 /A0 x denoting a real number on a unit circle.

' Consider a unit circle with the centre at the origin. Let
the angle zero (in radian measure) be associated with the
point A(1,0) on the unit circle. Draw a tangent to the unit

v circle at the point A(1,0). Let ¢ be a real number such that
Figure 3.8 t is y- coordinate of a point on the tangent line.
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For each real number ¢, identify a point B(x,y) on the unit circle such that the arc length AB is
equal to ¢. If ¢ is positive, choose the point B(z, y) in the anticlockwise direction, otherwise choose it
in the clockwise direction. Let 6 be the angle subtended by the arc AB at the centre. In this way, we
have a function w(t) associating a real number ¢ to a point on the unit circle. Such a function is called
a wrapping function . Then s = rf gives arc length ¢ = 6.

Now, define sint = sin # and cost = cos .

Clearly, sint = sinf = y and cost = cosf = x.

Using sint and cost, other trigonometric functions can be defined as functions of real
numbers.

E{ (i) B(z,y) = B(cost,sint) is a point on the unit circle.
Thus, —1 < cost < 1and —1 < sint < 1 for any real number ¢.
(ii) Wrapping function w(¢) is analogous to wrapping a line around a circle.
(iii) The value of a trigonometric function of a real number ¢ is its value at the angle ¢ radians.
(iv) Trigonometric functions of real numbers are used to model phenomena like waves,
oscillations, that occur in regular intervals.

Example 3.8 The terminal side of an angle ¢ in standard position passes through the point (3, —4).
Find the six trigonometric function values at an angle 6.

Solution:
Let B(x,y) = B(3,—4), OA be the initial side and OB be the terminal side of the angle ¢ in the

standard position.

Then ZAOB is the angle 6 and 6 lies in the IV quadrant. Also, ‘h
A
OB =r,r=+/a2+y2=1/32+(-4)°=5 q> 4
r =3, y=—4 and r =5, we have B(3-4)
4 4 :
sinf = 2 = —=; cosf = - §; tanfd = 2 = —= Figure 3.9
r 5 r b x 3
5 5 3
cosec ) = E:——; sec0:£:—; cot="2=_2
Y 4 w3 Y 4

Signs of Trigonometric functions
Consider a unit circle with centre at the origin.

A
Let 6 be in standard position. Let P(x,y) be the ©0.1)
point on the unit circle corresponding to the angle [P RRRETR .
6. Then, cosf = z, sinf = y and tanf = Ly m, S
The Va}ues of z and y are pogltlve or negative 7 %<0, y50 250, y>0
depending on the quadrant in which P lies. { sinepositive | All are positive
In the first quadrant: ‘(‘1’0)::_ 0 §(1,0) ]

. x<0, y<0 x>0, y<0
cos = x > 0 (positive); sinf = y > 0 (positive) . tan positive cos positive
Thus, cosf and sin # and hence all trigonometric m“\\ IV
functions are positive in the first quadrant. R
(03'1)
\/

In the second quadrant:

cos ) = x < 0 (negative); sin® =y > 0 (positive) Figure 3.10
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Thus, sin # and cosec 6 are positive and others are negative.
Similarly, we can find the sign of trigonometric functions in other two quadrants.
Let us illustrate the above discussions in Figure 3.10.

Q) Signs of trigonometric functions in various quadrants can be remembered with the slogan

“All Students Take Chocolate” (ASTC rule)

3
Example 3.9 If sinf = — and the angle 6 is in the second quadrant, then find the values of other
five trigonometric functions.

Solution:
/ 9 4
We know that sin? @ + cos? 0 = 1 = cosf = £/ 1 —sin?6 = +4/1 — % = j:g
Thus, cos = —z as cos 6 is negative in the second quadrant.
3 5 4 5
sinf = v = cosec 6 = 5; cosf) = —— = secl = ~1
sin 6 3 4
tanf = =——; t=——
o cos 0 g 3

Q) If sin 6 and cos @ are known, then the reciprocal identities and quotient identities can be
used to find the other four trigonometric values. The Pythagorean identities can be used to
find trigonometric values when one trigonometric value and the quadrant are known.

3.4.3 Allied Angles

Two angles are said to be allied if their sum or difference is a multiple of T radians.

3
Thus, any two angles of 6 such as, + 6, g +0, 710, ; + 0, ..., are all allied angles .

Now we shall find the trigonometric ratios involving
allied angles 6 and —6.

YA
Trigonometric ratios of —6 in terms of
Let ZAOL = 6 and ZAOM = —6. Let P(a, b) be a point L
on OL. Choose a point P" on OM such that OP = OP'. P(a,b)
Draw PN perpendicular to OA intersecting OM at
P'. Since ZAOP = ZAOP' and /PON = /P'ON < 0 >
APON and AP'ON are congruent. x’ ONJ-6 [N 4 "«x
Thus, PN = P’N and hence the point P’ is given by
P'(a,—b) P'(a,-b)
Now, by the definition of trigonometric functions M
: b a b
51119:@, Cosezﬁ, tanﬁza R
. —b —b .
Thus, sin(—6) = 0P 0P~ sin ¢ Figure 3.11
and cos(—0) = % =P cos 0
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Then, it is easy to get

tan(—60) = —tan @, cosec(—#) = —cosec ¢, sec(—0) = sec, cot(—0) = — cot 0.

@ (i) sin(—0) = —sin#, and cos(—0) = cos 6. These facts follow from the symmetry of the
unit circle about the x-axis. The angle —#@ is the same as angle ¢ except it is on the other
side of the z- axis. Flipping a point (z,y) to the other side of the z- axis makes the
point into (z, —y), so the y-coordinate is negated and hence the sine is negated, but the
x-coordinate remains the same and therefore the cosine is unchanged.

(i) The negative-angle identities can be used to determine if a trigonometric function is an
odd function or an even function .

Example 3.10 Find the values of (i) sin(—45°) (ii) cos(—45°)  (iii) cot(—45°)

Solution: 1
(i) sin(—45°) = —sin(45°) = &

(ii) cos(—45°) = 1 and (7i7) cot(—45°) = —1

V2

We have already learnt the trigonometric ratios of the angle (90° — 6), <O <l < g) in the lower

class. Let us recall the trigonometric ratios of angle (90° — 6) ;

sin(90° — @) = cosf, cos(90° —0) =sinf, tan(90° — @) = cot
cosec(90° — 0) = secl, sec(90° —0) = cosec 0, cot(90° — 0) = tanb.

Now, we will establish the corresponding trigonometric ratios for an angle of the form (90° + 0).

Trigonometric ratios of an angle of the form (90° + 6), (0 <0< g) in terms of 0 .
Let ZAOL = 6 and ZAOR = (90° + 0). Let P(a,b) be a

point on O L and choose a point P’ on OR such that 4

OP = OP'. R - L

Draw perpendiculars PM and P'N from P and P’ on Oz 92

and Oz’ respectively. P(-b,a) 3 P(a,b)

Now, ZAOP' = 90° + 0.

Clearly, AOPM and AP'ON are congruent. B 0 -
x N 0 M A "x

ON = MPand NP = OM

Hence, the coordinates of P and P’ are P(a,b) and
P'(—b, a), respectively. Now

. o y-coordinate of P’ a
sin(90° 4 0) = Op =op = s 0, IR
_coordinate of P’ —b
cos(90° + 0) = Lreoot Olr;/e © =0p— sin 6, Figure 3.12

Thus, tan(90°46) = — cot 8, cosec(90°+0) = sec b, sec(90°+6) = —cosect, cot(90°+6) = — tan 6.
The trigonometric function of other allied angles 7 + 6, % + 6, 2 £+ 6 can be obtained in a similar
way.

The above results can be summarized in the following table: (Here 0<6< g)
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4 g—e gw T—0 |46 37”—9 3§+e o0 —6 | 27+ 0
sine —sinf | cosé cos sinf) | —sinf | —cosf | —cosf@ | —sinf | sinf
cosine cosf | sinf —sinf | —cosf | —cosO | —sinf sin 6 cosf | cosb
tangent | —tan6 | cotf | —cotf | —tanf | tanf cotf | —coth | —tanf | tané

g (1) The corresponding reciprocal ratios can be written using the above table.
(ii) If the allied angles are +6, 7 + 6,27 + 6, that is, angles of the form an +60,n € Z,

then, the form of trigonometric ratio is unaltered (i.e., sine remains sine, cosine remains

cosine etc.,)

3
(iii) If the allied angles are g +0, g + 6, that is, angles of the form (2n + 1)% +0nelkZ

then, the form of trigonometric ratio is altered to its complementary ratio. ¢.e., it is to
add the prefix “co” if it is absent and remove the prefix “co” if it is already present
(7.e., sine becomes cosine, cosine become sine etc.,)

(iv) For determining the sign, first find out the quadrant and then attach the appropriate sign
(+ or —) according to the quadrant rule “ASTC”.

Example 3.11 Find the value of (i) sin 150° (ii) cos 135°  (iii) tan 120°.

Solution:

N —

(i) sin 150° = sin (90° + 60°) = cos(60°) =

e}

1
(or) sin150° = sin (180° — 30°) = sin(30°) =

1
ii) cos135° = cos (90° 4 45°) = —sin(45°) = ———=
i (90° 4 45°) = —sin5") = -
1
(or) cos135° = cos (180° — 45°) = —cos(45°) = ———=

V2
(iii) tan 120° = tan (180° — 60°) = — tan(60°) = —/3
(or) write tan120°astan (90° + 30°) and find the value.

Example 3.12 Find the value of:

(i) sin(765°) (i) cosec (—1410°) (i) cot<_z5ﬂ>.
Solution:

(i) sin 765° = sin (2 x 360° + 45°) = sin45° =

Sl -

(ii) cosec (—1410°) = —cosec (1410°) = —cosec (4 x 360° — 30°) = cosec 30° = 2
—15m 157 s T
(111) cot( 1 ) cot( 1 ) cot( 7 1 cot 1

Example 3.13 Prove that tan(315°) cot (—405°) + cot(495°) tan (—585°) = 2

Solution:
LHS = tan (360° — 45°) [— cot (360° + 45°)] - cot (360° + 135°) [ tan (360° + 225°)]
= [—tan45°] [— cot 45°] + [— tan45°] [— tan45°] = (=1)(-=1) + (=1)(-1) = 2.
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3.4.4 Some Characteristics of Trigonometric Functions
Trigonometric functions have some nice properties. For example,

(i) Sine and cosine functions are complementary to each other in the sense that
sin (90° — ) = cos # and cos (90° — ) = sin 6.
(i) As cosf and sinf are obtained as coordinates of a point on the unit circle, they satisfy the
inequalities —1 < cosf < 1 and —1 < sinf < 1. Hence, cosf,sinf € [—1, 1]
(ii1)) Trigonometric function repeats its values in regular intervals.
(iv) Sine and cosine functions have an interesting property that cos (—6) = cos 6 and
sin (—0) = —sin@

Let us discuss the last two properties.

Periodicity of Trigonometric Functions

We know that a function f is said to be a periodic function with period p, if there exists a smallest
positive number p such that f(z + p) = f(z) for all = in the domain.
For example, sin (z + 2n7) = sinz, n € Z.
ie.sin(z+2m) =sin(z+4n) =sin(z +67) = ... =sinx
Thus, sin z is a periodic function with period 27.
Similarly, cos x , cosecx and sec x are periodic functions with period 27.
But tan  and cot x are periodic functions with period 7.
The periodicity of sin x and cos x can be viewed best using their graphs.

(i) The graph of the sine function

y

EEEVERVEE v

One cycle —

Sal

N -
~o

Figure 3.13: y =sinx

Here x represents a variable angle. Take the horizontal axis to be the x-axis and vertical axis
to be the y-axis. Graph of the function y = sin x is shown in the Figure 3.13. First, note that it
is periodic of period 27. Geometrically it means that if you take the curve and slide it 27 either
left or right, then the curve falls back on itself. Second, note that the graph is within one unit of
the y-axis. The graph increases and decreases periodically. For instance, increases from —g to

— and decreases from to 3—7T
2 2 2

(ii) The graph of the cosine function

—2‘11 -3n -;-r I 3n 57 7n 47[
2\/2 2\/2 . 2\/ \/

One cycle —

Figure 3.14: y = cosx
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Observe that the graph of y = cos x looks just like the graph of y = sin x except it is being
translated to the left by E. This is because of the identity cos z = sin <z + x) . It easily follows

from the graph that cos z = cos (—x) = sin <g + x)

El) (i) The sine and cosine functions are useful for one very important reason, since they repeat
in aregular pattern (i.e., they are periodic). There are a vast array of things in and around
us that repeat periodically. For example, the rising and setting of the sun, the motion of
a spring up and down, the tides of the ocean and so on, are repeating at regular intervals
of time. All periodic behaviour can be studied through combinations of the sine and
cosine functions.

(i) Periodic functions are used throughout science to describe oscillations, waves and other
phenomena that occur periodically.

Odd and Even trigonometric functions

Even and odd functions are functions satisfying certain symmetries. A real valued function f(z) is
an even function if it satisfies f(—z) = f(x) for all real number = and an odd function if it satisfies

f(=z) = — f(x) for all real number z.
Basic trigonometric functions are examples of non-polynomial even and odd functions
Because cos(—x) = cosx and sin(—x) = — sin x for all z, it follows that cos x is an even function

and sin x is an odd function.
Also note that sec x is an even function while tan x, cosec x and cot x are all odd functions.
However, f(t) =t — cost is neither even function nor odd function (why ?)

Example 3.14 Determine whether the following functions are even, odd or neither.
(i) sin®?x — 2cos®x — cosz (i) sin (cos(z)) (iii) cos (sin(z)) (iv) sinz + cosz

Solution:

(i) Let f(z)=sin?2 —2cos’z — cosx
f(=z) = f(z) I[sincesin(—z) = —sinz and cos(—z) = cos 7]
Thus, f(z) is even.
(ii) Let f(x) = sin (cos(x))
f(=z) = f(x), f(x) isan even function.
(iii) f(z) = cos(sin(z)), f(—z) = f(x), Thus, f(x) is an even function.
(iv) Let f(x) =sinx + cosx
f(=z) # f(z) and f(-z) # — f(z)

Thus, f(x)=sinz + cosz is neither even nor odd.

@ (1) In general, a function is an even function if its graph is unchanged under reflection about
the y-axis. A function is odd if its graph is symmetric about the origin.
(i) The properties of even and odd functions are useful in analyzing trigonometric functions
particularly in the sum and difference formula.
(iii) The properties of even and odd functions are useful in evaluating some definite integrals,
which we will see in calculus.
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@ Exercise - 3.3

1. Find the values of (i) sin(480°) (i) sin(—1110°) (iii) cos(300°) (iv) tan(1050°)

(v) cot(660°) (vi) tan (19%) (vii) sin (—%)

7

trigonometric function values of angle 6.
3. Find the values of other five trigonometric functions for the following:

5 2v6
2. (?, i) is a point on the terminal side of an angle ¢ in standard position. Determine the six

(i) cosf = —%, 6 lies in the III quadrant.
2
(i1) cosf = 3 @ lies in the I quadrant.

2
(iii) sinf = —3 0 lies in the IV quadrant.

(iv) tanf = —2, @ lies in the II quadrant.

13
(v) secl = = 0 lies in the IV quadrant.

cot(180° + ) sin(90° — ) cos(—0)

= cos” § cot 6.
sin(270° 4 #) tan(—60)cosec(360° + ) cos veo

4. Prove that

3
5. Find all the angles between 0° and 360° which satisfy the equation sin? § = T

7 4
6. Show that sin® 118 + sin? % + sin? 1—78T + sin? ?ﬂ = 2.

3.5 Trigonometric Identities

3.5.1 Sum and difference identities or compound angles formulas

Now, compound angles are algebraic sum of two or more angles. Trigonometric functions do not
satisfy the functional relations like f(x + y) = f(x) + f(y) and f(kz) = kf(x), k is a real number.
For example, cos(a + [3) # cos a + cos 3, sin(2a) # 2sin a, tan 3a # 3tan «, . . .. Thus, we need to
derive formulas for sin(a + f3), cos(a + f3), . . . and use them in calculations of application problems.

Music is made up of vibrations that create pressure on ear-drums. Musical tones can be modeled
with sinusoidal graphs (graphs looks like that of y = sinz or y = cos x). When more than one tone
is played, the resulting pressure is equal to the sum of the individual pressures. In this context sum
and difference trigonometric identities are used as an important application. Also, sum and difference
trigonometric identities are helpful in the analysis of waves.

First we shall prove the identity for the cosine of the sum of two angles and extend it to prove all
other sum or difference identities.

Identity 3.1: cos(a + ) = cosacos § — sinasin 3
Proof. Consider the unit circle with centre at O. Let P = P(1,0).

014" R (cos(a+B), sin(a+p)) Let @, R and S be points on the unit circle such that
ZPOQ = a, ZPOR = a+  and LPOS = —f as
g Q(cos a, sin o) shown in the Figure 3.15. Clearly, angles o, «+ 3 and — 3
(-1,0) o, 00) are in standard positions. Now, the points (), R and .S are
o s () given by Q(CQS a,sina), R (cos(a + (), sin(a + )) and

~ S (cos(—p),sin(—0)).

Figure 3.15
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Since APOR and ASOQ are congruent. So, PR = S which gives PR?* = SQ?

Thus, [cos(a + ) — 1]% + sin(a + ) = [cos a — cos(—fB)]* + [sin o — sin(—3)]”

—2cos(a+ ) +2=2—2cosacos[f + 2sin asin

Hence, cos(a + () = cos a cos f — sin asin S.

El@ (i) In the above proof, PR = S(@) says that the distance between two points on a circle is
determined by the radius and the central angle .
(ii) Arc lengths PR and SQ, subtends angles o + 3 and « + (—[3) respectively at the center.
Thus, PR = SQ. Thus, distance between the points (cos ¢, sin «v) and (cos(—f), sin(—/3))
is same as the distance between the points (cos(« + 3),sin(a + 3)) and (1, 0).
(iii) In the above derivations, 0 < a < 27, 0 < 8 < 27. Because of periodicity of sine and
cosine, the result follows for any v and f3.

Identity 3.2: cos(aw — ) = cosacos § + sinasin 3
Proof.
We know that cos(a + 3) = cos avcos f — sin asin 3
Now, cos(a— ) = cos|a+ (—03)]
= cosacos(—f) — sinasin(—pf)

Hence, cos(av — ) = cosacos § + sin asin 5.

El@ (1) If o = f, the above identity is reduced to cos® a4 sin o = 1.

(ii) If @« = 0 and = x, then cos(—x) = cos x, which shows that cos z is an even function.

Identity 3.3: sin(a + ) = sina cos  + cos asin

Proof. This formula may be proved by writing sin(a+/) = cos [g — (a+ B)] = cos [(g - a) - B}
and by using Identity 3.2.

G@ If a + 8 = 7, the above identity is reduced to cos? a +sin® o = 1.

Identity 3.4: sin(o — ) = sinacos § — cos asin

Proof. This formula may be proved by writing sin(a— ) = sin [ + (— )] and by using Identity 3.3.

D@ The sum and difference formulas for sine and cosine can be written in the matrix form

cosa —sina cos 3 —sinf8 cos(a + B) —sin(a + )
sina  cosa sinf  cosf sin(a + ) cos(a + )
tan o + tan 3

Identity 3.5: tan(a + ) =

1 —tanatanfj
Proof.

tan(a + ) sin(a + )  sinacos 4 cos asin
an(« = —
cos(a+ )  cosacosf — sinasin
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sin v cos B + cos asin 3

cos o cos 3
cos acos B — sinasin 3

cos a cos 3
tan o + tan 3

Hence, tan(a + ) = T tanatan

t —t
Identity 3.6: tan(o — ) = 1 j—ntC;n o j;nﬁﬁ

Proof. This result may be proved by writing tan(« — 3) = tan [« 4+ (—/)] and using the Identity 3.5.

(i) Ptolemy (CE 100-170 ) treated the chord of an angle as
his basic trigonometric function and proved the theorem: In
a cyclic quadrilateral, the product of diagonals equals the
sum of the products of opposite sides. That is, in a cyclic
quadrilateral ABC'D,

(AC)(BD) = (AB)(CD) + (AD)(BC).

Using this theorem, one can prove Sum and Difference
identities. Hence, these identites are known as Ptolemy’s
sum and difference formulas.
(ii) Observe that cos(a & ) # cos a % cos 3. Similarly we can
observe for other trigonometric functions also.
(iii) When o = 3, sin(av — f) = sin awcos f — cos asin 3 implies sin 0 = 0, which we have
already established.

Figure 3.16

(iv) When a = g and f = 0, sin(a — ) = sinacosf — cosasinf gives

sin (g — 0) = cos #, which we have already proved.

(v) We can find the trigonometric function values of a given angle, if we can break it up into
sum or difference of two of the special angles. For example, we can evaluate tan 75° as
tan(45° 4+ 30°) and cos 135° as cos(180° — 45°).

Example 3.15 Find the values of (i) cos 15° and (ii) tan 165°.

Solution:

(i) Now, cos15° = cos (45° — 30°) = cos 45° cos 30° + sin 45° sin 30°
1v3 11 V341

Va2 "2 ae

Also, note thatsin 75° = \/5—"'21[ try yourself |

2v/2

. o o oy tan120° + tan 45°
(i) Now, tan165° = tan(120° +45°) = tan 190° tan AE-

But, tan 120° = tan(90° 4 30°) = —cot 30° = —v/3 and tan45° =1
1-+/3
1+v3

Thus, tan 165° =
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4 —12
Example 3.16 If sinz = = (in I quadrant ) and cosy = T3 (in IT quadrant), then
find (i) sin(x —y), (i) cos(x —y).
Solution:
. , 4
Given that sinz = £

16 3
=1 gi — £v/1—sin?z =£4/1 — — = £+
T gives cosx sin® z = =

cos® x + sin?

. " 3
In the first quadrant, cos x is always positive. Thus, cos z = 5

12
Also, given that cosy = — 3 in the II quadrant. We have

144 5)
siny =++/1—cos?y=%+4/1 — — =+—.
169 13

5

In the second quadrant, sin y is always positive. Thus, siny = —.

o : . 4 (—12 3
(i) sin(x —y) =sinxzcosy — cosrsiny = E (?) — =
4
5

5 . . 3 (—12
(ii) cos(z —y) = cosx cosy + sinxsiny = = <1_3> +

3 3
Example 3.17 Prove that cos (Zﬁ -+ x) — cos (f — :1:) = —V2sinz

Solution:

T L 3 . 3T,
LH.S = coszcosx—szsmx—Cos—cosx—sm—smx

™ 1
= —2sin <7r — —) sinex = —2 (—) sinx = —\/§sinx.
4 V2

EIQ Observe that cos(A + x) — cos(A —x) = —2sin Asinz

Example 3.18 Point A(9, 12) rotates around the origin O in a plane through 60° in the anticlockwise
direction to a new position 5. Find the coordinates of the point B.

Solution:

Let A(9,12) = A(rcosf,rsinf), where r = OA. Thenrcosf =9 and rsinf = 12.
Thus, 72 = 81 + 144 = 225 = r = 15.

Hence, the point A is given by A (15cosf, 15sin6).

Now, the point B is given by B (15 cos(f + 60°), 15sin(6 + 60°)).

15cos(f + 60°) = 15 (cos @ cos60° — sin 6 sin 60°)

1
= (15cosf) cos60° — (15sin ) sin 60° = 9 x 5= 12 x \/73 = 3(3 — 4V/3)
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Similarly, 15sin(6 + 60°) = 2(4 + 3v/3). Hence, the point B is given by
3 3
B (5(3 — 4V/3), S@+ 3\/3)) .

Example 3.19 A ripple tank demonstrates the effect of two water waves being added together. The
two waves are described by h = 8cost and h = 6sint, where ¢ € [0,27) is in seconds and h is
the height in millimeters above still water. Find the maximum height of the resultant wave and the
value of ¢ at which it occurs.

Solution:
Let H be the height of the resultant wave at time ¢. Then H is given by
H = 8cost + 6sint
Let 8cost+ 6sint = kcos(t — a) = k(cost cos o + sin ¢ sin «)
3
Hence, k = 10 and tan o = —, so that

H =10cos(t — )

3
Thus, the maximum of A = 10 mm. The maximum occurs when ¢ = «, where tana = 7

Example 3.20 Expand (i) sin(A + B + C) (i) tan(A + B + C)

Solution:

() sin(A+ B+ C) = sin[A+ (B+ C)]
sin A cos(B + C) 4 cos Asin(B + C)
= sin A cos B cos C' + cos A sin B cos C
+ cos Acos Bsin C' — sin Asin Bsin C'
(i) tan(A+ B+ C) = tan[A+ (B + C)]

_ tan A+ tan(B + O)
~ 1—tanAtan(B + C)
tan B + tan C'
tan A
. o +1—tanBtanC’
o tan B + tan C
1—tanA
o 1 —tan BtanC

tan A + tan B + tan C — tan A tan B tan C'
1—tanAtan B — tan BtanC — tan C' tan A

@ (i) If A+B+C =0 or 7, we have tan(A + B + C') = 0 so that
tan A +tan B + tan C' = tan Atan Btan C.

This result is also true in the case of oblique triangles.
(i) tan(z —y) + tan(y — 2) + tan(z — z) = tan(z — y) tan(y — 2) tan(z — x)
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. Find cos(z — y), given that cos x = —x withm < 2 < ; and siny = ~3¢ withm <y < °r

7
. Find the value of (i) cos 105° (i) sin 105° (iii) tan —
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(iii) tan3A —tan2A — tan A = tan 3A + tan(—2A) + tan(—A) = tan3A tan 2A tan A
(iv) A+ B+C = g, then tan Atan B + tan Btan C + tan C'tan A = 1 ( How! ).

@ Exercise - 3.4

15 12
.Ifsinx:1—7andcosy:—,0<x<z,0<y<z,

13 2 2
find the value of (i) sin(z +y) (ii) cos(z —y) (iii) tan(x + y).

.IfsinAzgandcosB:%,0<A<Z,O<B<z,

2 2
find the value of (i) sin(A + B) (ii) cos(A — B).

2

8 24 3
. Find sin(z — y), given that sinx = 7 with0 <z < g and cosy = ~25 withm <y < ;

12°
\/gcosx —sinx

. Prove that (i) cos(30° + z) = (ii) cos(m + 0) = — cos 6

2
(i) sin(m + 0) = —sin 6.

7. Find a quadratic equation whose roots are sin 15° and cos 15°.
8. Expand cos(A + B + (). Hence prove that

10.
11.
12.
13.
14.
15.

16.
17.

18.
19.

cos A cos B cos C' = sin Asin B cos C' + sin B sin C' cos A + sin C'sin A cos B,

if A+ B+C = g
Prove that

(i) sin(45° + 6) — sin(45° — §) = V2sin 6.
(if) sin(30° + 6) + cos(60° + 0) = cos 6.
If a cos(x + y) = beos(x — y), show that (a + b) tanx = (a — b) cot y.
Prove that sin 105° + cos 105° = cos 45°.
Prove that sin 75° — sin 15° = cos 105° + cos 15°.
Show that tan 75° + cot 75° = 4.
Prove that cos(A + B) cos C' — cos(B + C) cos A = sin Bsin(C' — A).
Prove that sin(n 4 1)#sin(n — 1)6 4 cos(n + 1)f cos(n — 1) = cos 26, n € Z.

2 4
If x cos 6 = y cos (9+ g) = 2 COos (9—1— %),ﬁndthe value of xy + yz + zx.

Prove that
(i) sin(A + B)sin(A — B) = sin* A — sin* B
(ii) cos(A+ B)cos(A — B) = cos> A —sin® B = cos® B — sin® A
(iii) sin?(A + B) —sin*(A — B) = sin2Asin 2B
(iv) cos 86 cos 260 = cos® 50 — sin? 30

Show that cos® A + cos® B — 2 cos A cos B cos(A + B) = sin*(A + B).
3
If cos(aw — f3) + cos(8 — ) + cos(y — a) = —5 then prove that

cosa + cos 5+ cosy = sina + sin 5 + siny = 0.
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20. Show that

1+tan A 1—tan A
i) tan(45° + A) = ——— (ii) tan(45° — A) = ———.
(i) tan(45° + A) 1—tanf64A (uzBan(15 ) T tan A
cot Acot B —

21. P that cot(A + B) = .
rove that cot(A + B) cot A+ cot B

22. If tanx = nn I and tany = 2n+1,ﬁndtan(w+y).

23. Prove that tan (% + 0) tan <%T7T + 9) = —1.

3

1
24. Find the values of tan(a + f3), given that cot v = 3@ € <7r, 5

> and sec § = —g,ﬁ € (g,w).

k—
25. If 0 + ¢ = aand tan 6 = ktan ¢, then prove that sin(6 — ¢) = sin a.

E+1

3.5.2 Multiple angle identities and submultiple angle identities

In 1831, Michael Faraday discovered that when a wire is passed near a magnet, a small electric
current is produced in the wire. This property is used to generate electric current for houses,
institutions and business establishments throughout the world. By rotating thousands of wires near
large electromagnets, massive amount of electricity can be produced.

Voltage is a quantity that can be modeled by sinusoidal graphs and functions. To model electricity
and other phenomena, trigonometric functions and identities involving multiple angles or sub multiple
angles are used.

A A
If A is an angle, then 2A,3A, ... are called multiple angles of A and the angle o0 g are

called sub-multiple angles of A. Now we shall discuss the trigonometric ratio of multiple angles and
sub-multiple angles and derive some identities.

Double Angle Identities

Let us take up the sum and difference identities and examine some of the consequences that come
from them. Double angle identities are a special case of the sum identities. That is, when the two
angles are equal, the sum identities are reduced to double angle identities. They are useful in solving
trigonometric equations and also in the verification of trigonometric identities. Further double angle
identities can be used to derive the reduction identities (power reducing identities). Also double angle
identities are used to find maximum or minimum values of trigonometric expressions.

Identity 3.7: sin2A = 2sin Acos A
Proof.

We know that sin(a + ) = sinacos § + cos asin 8
Taking « = = A, wehave sin(A+ A) =sin Acos A + sin Acos A
Thus, sin2A = 2sin A cos A.

EIQ (i) y =sin2z and y = 2sin z are different. Draw their graphs and identify the difference.
(i1) Application of sin 24 = 2sin A cos A: When an object is projected with speed u at an
angle « to the horizontal over level ground, the horizontal distance (Range) it travels

2 & 2
before striking the ground is given by the formula R = wemea
g
. u? s
Clearly maximum of R is —, when o = T
9
in2A 1
(i) |sin A cos A| = st ' <5
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1 1
Thus, —3 <sinAcos A < 5

S

) ) ) ) .1
From this, we infer that the maximum value of sin A cos A4 is 3 when A = —.

Example 3.21 A foot ball player can kick a football from ground level with an initial velocity of
80 ft/second. Find the maximum horizontal distance the football travels and at what angle?

(Take g = 32).

Solution:
The formula for horizontal distance R is given by

u?sin20 (80 x 80) sin 2«
g - 32

R = = 10 x 20sin 2a.

Thus, the maximum distance is 200 ft.
Hence, he has to kick the football at an angle of v = 45° to reach the maximum distance.

Identity 3.8: cos2A = cos® A — sin? A
Proof.
We know that cos(a+ ) = cosacosf — sinasin 3

Take o = = A. We have cos(A + A) = cos Acos A —sin Asin A
cos2A = cos® A — sin® A.

Q) From the identity cos 2A = cos? A — sin? A, we also have

cos2A = cos’ A — (1 — COSzA) =2cos’ A —1and
cos2A = (1 —sin® A) —sin® A = 1 — 2sin® A.

. 2tan A
Identlty 3.9: tan2A4 = m

Proof.
tan o + tan
1 —tanatan g

Now, tan(a+ ) =

tan A + tan A
ea=0 e have, tan(A + A) o
2tan A
tan2A = 2
o 1 —tan? A
2tan A
Identity 3.10: sin24 = ————
o . 1+ tan® A
Proof.
2sin A cos A
we know thatsin24 = 2sin Acos A = — sln cos
sin” A + cos? A
2sin Acos A
-  cos?A _ 2tan A ‘
Sin2A+COSQA 1+tan2A
cos® A
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1 —tan? A
Identity 3.11: 2A= —— ——
entity cos T tan? A

Proof.

2 . 9
cos* A —sin“ A
We know thatcos24 = cos® A —sin® A = — —
cos” A +sin” A
cos? A —sin® A
cos® A
cos? A +sin? A
cos® A
1 —tan? A

1+tan? A

Thus, cos24 =

Power reducing identities or Reduction identities

Power reducing identities for sine, cosine and tangent can be derived using the double-angle identities.

For example,

1 2A
cos2A =2cos’A—1= cos’ A = —'—C%

The following table is the list of power reducing identities.

Power Reducing Identities

1 —cos2A 1 2A
0205 oA = +C;)S

1—
 tan?A = cos 24

)
A= _
St 14 cos2A

(1) In the power reducing identities, we have reduced the square power on one side to
power 1 on the other side.
(ii)) Power reducing identities allow us to rewrite the even powers of sine or cosine in
terms of the first power of cosine.
For example, using power reducing identities one can easily prove that

cos* x = 1cos4x—|— L cos 2T + 5 and sin'z = = cosdz — L cos 2T + 5 (Try it!)
~3 2 8 ~3 2 g Y

(iii)) Power reducing formulas are important in higher level mathematics.

Triple-Angle Identities

Using double angle identities, we can derive triple angle identities.

Identity 3.12: sin3A = 3sin A — 4sin® A

Proof.

We have, sin3A4 = sin(24 + A) =sin2A cos A 4 cos 2Asin A

= 2sin Acos® A + (1 — 25sin? A) sin A
= 2sin A (1 — sin? A) + (1 — 2sin? A) sin A
= 3sin A —4sin® A
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Identity 3.13: cos3A = 4cos® A — 3cos A
Proof.

We have, cos3A = cos(2A + A) = cos2A cos A — sin2Asin A
= (20082A — 1) cos A — 2sin Acos Asin A
= (2008214 — 1) cos A —2cos A (1 — cos2A)
= 4cos® A —3cos A.

3tan A — tan® A
1 —3tan? A

Identity 3.14: tan3A =
Proof.

We have, tan3A4 = tan(2A4 + A)

tan2A + tan A
1 —tan2Atan A

2tan A

1—tan?A
2tan A

+ tan A

3tan A — tan® A
1—3tan? A

Double and Triple angle identities are given below:

sine cosine Tangent
2tan A
sin2A = 2sin Acos A cos2A = cos®’ A —sin® A tan 24 = Lz
1 —tan* A
2tan A 3tan A — tan® A
sin24 = # cos2A =2cos? A — 1 tan3A = an Zm
1+ tan® A 1—3tan* A
sin3A = 3sin A —4sin® A | cos24A =1 — 2sin® A
1 —tan? A
2A = ——
o8 14 tan? A
cos3A = 4cos® A — 3cos A

Half-Angle Identities
Half angle identities are closely related to the double angle identities. We can use half angle identities

when we have an angle that is half the size of a special angle. For example, sin 15° can be computed by

[e]

writing sin 15° = sin . Also one can find exact values for some angles using half-angle identities.

0 6
Ifweput2A =60 or A= 3 in the double angle identities, we get new identities in terms of angle 3
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Let us list out the half angle identities in the following table:

Double angle identity Half-angle identity
0
sin2A = 2sin Acos A sin9:2sin§cos§
cos2A = cos® A —sin® A cos @ = cos? g — sin? g
cos2A =2cos? A — 1 COS(9:2C082§—1
cos2A =1—2sin’ A 0039:1—231112%
0
2t A 2tan %
taLnQA:L2 tanf = — 2
1 —tan* A 1 2
— tan® —
2
0
2% A an 9
SIHQA:% sin@zu
+ tan 1+ tan? =
2
0
2
1 —tan A 1 —tan” -
COSQAZH% 0059:—5
+ tan 1 + tan2 §

Q (i) The half angle identities are often used to replace a squared trigonometric function by a
non squared trigonometric function.
(i1) Half angle identities allow us to find the value of the sine and cosine of half the angle if
we know the value of the cosine of the original angle.

1 o
Example 3.22 Find the value of sin (225 )

Solution:

0 0 1= 0
We know that cos 0 = 1 —2sin2§ = sin§ = 4 %. Take 6 = 45°

45O /1 — cos45° 1°
we get sin = % (taking positive sign only, since 225 lies in the first quadrant)

1 /—
—_— — 2 _
Thus, sin 22— 5 Ce.

12
Example 3.23 Find the value of sin 26, when sin § = (EL 0 lies in the first quadrant.

Solution: 5
Using a right triangle, we can easily find that cos = —

13
12 5 120
sin 20 = 2sin 6 cos 0 = 2 (13) (E) = 169"

Trigonometry 114




www.thtextbooks.in

El“j Instead of constructing the triangle, we can also find the value of cos 6 using
cosf = +/1 —sin?@ formula.

Example 3.24 Prove that sin 44 = 4sin A cos® A — 4 cos Asin® A

Solution:

4sin Acos® A —4cos Asin® A = 4sin Acos A (Cos2 A — sin® A)
= 4sin Acos Acos2A = 2(2sin Acos A) cos 24
= 2(sin2A) cos2A = sin4A.

Example 3.25 Prove that sin z = 2'%sin <%> Cos <g> Cos (%) ... COS (%)

Solution:

sinz = 2sin —cos— = 2 X 2 X Sin — COS — COS —
2 2 22 22 2

9 . X T T

= 2 Sl 5 COS  COS o5

2 2 2

Applying repeatedly the half angle sine formula, we get

. . 210 . iy x X X
siny = sin (ﬁ) cos <§> coS <§) ... COS <ﬁ> .
EIQ The above result can be extended to any finite number of times.

sin 6 + sin 20
E le 3.26 P that = tand
xampe rove tha 1 4 cos 6 + cos 20 o

Solution:

We have —>f T sin20 sinf +2sinfcost _ sinf(1+2cosd) .
- = = tand.
14 cosf +cos20  cosf+ (1+cos20) cosf(1+ 2cosh)

sin® z + cos® z

1
Example 3.27 Prove that 1 — —sin 2z = —
2 sinx + cos T

Solution:

sin® x 4 cos® x (sinz + cos z) (sin® x — sinz cos z + cos? x)
We have — = -
Sin T + cos x SINx + COS T

1
= 1—sinxcosx =1— §sin2x.
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Example 3.28 Find z such that —7 < x < 7 and cos 2z = sinx

Solution:

We have cos2x = sinx which gives
2sin®z +sinz — 1 = 0. The roots of the equation are

. —1+£3 | 1
SIN T — = — or —
4 2
Now, si 1 = ™ 5
B InNr = — x:—,_
2 6 6
Also sinx:—1:>g;:_g
Thus, z = —ii 5_7T
26 6

Example 3.29 Find the values of (i) sin 18°  (ii) cos 18° (iii) sin 72° (iv) cos 36° (V) sin 54°

Solution:

(i) Let 0 = 18°. Then 50 = 90°
30 4 20 = 90° = 20 = 90° — 30
sin 26 = sin(90° — 36) = cos 36
2sinf cosf = 4cos®f — 3cosh. Since cosf = cos18° # 0, we have
2sinf = 4cos’d — 3 = 4(1 —sin*9) — 3
4sin*6 + 2sinf — 1 =0
—2+/4—-44)(-1) -1x+5
2(4) 1
VvE—1

Thus, sin 18° = 1 ( positive sign is taken. Why ?)

(i) cos18 = /1 —sin?18°
2
V5 —1 1 1\/7
= 1-— = = 16 — 1—2 = = 1 2
[4 4\/6 (54 V5) . 04 2v5
1
(iii)  sin72° = sin(90° — 18°) = cos 18° = ~1/10 + 2v/5

sin @ =

4
2
5—1 541
(iv) c0s36°=1—2sin’18°=1—2 V5 :\/—+
4 4
541
(v) sinb54° =sin(90° — 36°) = cos 36° = \/_4+ :

E'“j Observe that sin 18° = cos 72°, cos18° =sin72° and cos36° = sin H4°

—a cosf —a

0 1 -~
Example 3.30 If tan 5= s tan %, then prove that cos ¢ = T acosd"
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Solution:
By the half-angle identity, we have

_ 2 l—a
cos ¢ = 1+tan2¢ n l1+a o
hid n2 2
2 1—a 2
1 —tan? -
—a
2
_ Ltan 9 _ cosf —a
1—tan?? 1—acosf
l—a| ——2
0
1+ tan® -

2

Example 3.31 Find the value of v/3 cosec 20° — sec 20°

Solution:
3 1
Y V3 1 % cos 20° — 3 sin 20°
We h 3 20° — 20° = — =4l
¢ nave cosee hee sin 20°  cos 20° 2 sin 20° cos 20°
_ 4 sin 60° cos 20° — cos 60° sin 20° _
- sin 40° -

sin 2" A

Example 3.32 Prove that cos A cos 24 cos 22 A cos 22A .. . cos 2" 1A = e A
" Sin

Solution:

L.HS. = cosAcos2Acos2?Acos2A...cos2" 1A

1
= — 2sin Acos Acos2A cos 22 Acos22A .. .cos 2" A
2sin A

1
= - sin 24 cos2A cos 22Acos 22 A .. .cos 2" A
2sin A

1
= P d sin4Acos2*Acos2°A ... cos2" 1A
Continuing the process, we get
sin2"A
2nsin A

@ Exercise - 3.5

1. Find the value of cos 2A, A lies in the first quadrant, when

15 4 16
(i) cos A = T (i) sin A = R (iil) tan A = 63"
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2. If # is an acute angle, then find

I & S . 1
(i) sin <Z — 5), when sin = T
0
(ii) cos (% + 5) , when sin 6 = g

1 1 1 1
3. Ifcosf = = [a+ = |, show that cos 30 = = [ a® + — ).
2 a 2 a3

4. Prove that cos 50 = 16 cos” 6 — 20 cos® 0 + 5 cos 6.
1 —tan®a
(14 tan2a)®
6. If A+ B = 45°, show that (1 + tan A) (1 + tan B) = 2.
7. Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ... (1 + tan 44°) is a multiple of 4.

5. Prove that sin4o = 4 tan «

8. Prove that tan <% + 9) — tan <% — 0) = 2tan 20.

10
9. Show that cot (75 ) =V2+V3+V1+ 6.

10. Prove that (1 + sec260)(1 +sec46) ... (1 + sec2"d) = tan 2"0 cot 6.

m 7r T m 7r
11. P h 2 Sin — cos — — COS — - =3.
rove that 32(1/3) sin 15 008 15 008 57 €08 75 €08 3

3.5.3 Product to Sum and Sum to Product Identities

Some applications of trigonometric functions demand that a product of trigonometric functions be
written as sum or difference of trigonometric functions. The sum and difference identities for the
cosine and sine functions look amazingly like each other except for the sign in the middle. So, we
tend to combine them to get nice identities. Thus, we use them to derive several identities that make
it possible to rewrite a product as a sum or a sum as a product.

We know that

sin(A+ B) = sin Acos B 4 cos Asin B (3.1)

sin(A — B) = sin Acos B — cos Asin B (3.2)

cos(A+ B) = cos Acos B —sin Asin B (3.3)

cos(A — B) = cos Acos B + sin Asin B (3.4)

From the above identities, we can easily derive the following Product to Sum identities.

1

sin Acos B = §[sin(A + B) +sin(A — B)] (3.5)
1

cos Asin B = é[sin(A + B) —sin(A — B)] (3.6)
1

cos Acos B = é[cos(A + B) + cos(A — B)] (3.7)
1

sin Asin B = i[cos(A — B) — cos(A + B)] (3.8)

The above identities are very important whenever need arises to transform the product of sine and
cosine into sum. This idea is very much useful in evaluation of some integrals.

To get Sum to Pro%uct gentities,éet uls) introduce the substitutions A+ B =Cand A — B = D
or equivalently A = + , B = — in the product to sum identities (3.5) to (3.8). Then, we

have the following Sum to Product identities

C+D Cc—-D
sinC +sinD = 2sin ; cos 5 3.9)
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cC+D  C-D

sinC —sinD = 2cos 5 sin 5
C+D C—-D
cosC +cosD = 2cos _|2— cos 5
D D —
cosC —cosD = QSinC; sin 5 ¢

1
Identity 3.15: Prove that sin(60° — A) sin Asin(60° + A) = 1 sin 34
Proof.

sin(60° — A) sin Asin(60° + A) = sin(60° — A) sin(60° + A) sin A

1
=5 [cos 2A — cos 120°] sin A

1 1

= — |cos2Asin A+ —sin A
2 2
111 1

= 5 |:§ sin 3A:| = Z sin 3A

Similarly we can prove the following two important identities
1
Identity 3.16: cos(60° — A) cos A cos(60° + A) = 7 608 3A

Identity 3.17: tan(60° — A) tan A tan(60° + A) = tan3A

Example 3.33 Express each of the following product as a sum or difference

5
(i) sin 40° cos 30° (i) cos 110°sin 55° (i) sin g cos ;

Solution:

(i) We know that 2sin Acos B = sin(A + B) +sin(A — B)
Take A = 40°and B = 30°. We get,

Thus, sin40° cos30° = % [sin 70° 4 sin 10°] .

(i) We know that 2cos Asin B = sin(A + B) — sin(A — B)
Take A = 110° and B = 55°. We get,
2cos 110°sin 55° = sin(110° + 55°) — sin(110° — 55°).
Thus, cos110°sin55° = % [sin 165° — sin 55°]

(iii) We know that 2sin A cos B = sin(A + B) + sin(A — B)

T 3z
Take A = —and B = —
ake 5 an 5
We get QSinxcosgx—sin x+3x + sin Lot
&5 g Ty TR g T ) T e T
S 1
Thus,sinfcos—x:—[Sin2x—sinx].
2 2 2

2sin 40° cos 30° = sin(40° + 30°) + sin(40° — 30°) = sin 70° + sin 10°.

(3.10)
(3.11)

(3.12)
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Example 3.34 Express each of the following sum or difference as a product

3 9
(1) sin 50° + sin 20° (ii) cos 66 + cos 260 (iii) cos ; — cos ;

Solution:

C+D C-D
(i) We know that sin C' + sin D = 2sin ; cos —

Take C = 50° and D = 20°. We have
50° + 20° 50° — 20°
sin 50° + sin 20° = 2 sin ;— cos 5 = 25sin 35° cos 15°

C+D C—-D
(i) We know that cos C' + cos D = 2 cos —12_ cos 5

Take C' = 60 and D = 26. We have

60 + 20 660 — 20

cos 660 + cos 20 = 2 cos —; CoS 5 = 2 cos 46 cos 20
C+D D—-C

(ii1)) We know that cos C' — cos D = 2sin —; sin

2
Take C’=3§andD=9§.Wehave
3:C+9x 9 3z
3 9 5 Ty 5 9 3
cos%—cos%z?sin 2 5 2 Sin 2 5 2 :2sin3xsin§.

Example 3.35 Find the value of sin 34° + cos 64° — cos4°.
Solution:

4° + 4° 4° — 4°
We have sin 34° 4 cos 64° — cos4° = sin 34° — 2sin <GT+) sin (67)

= sin 34° — 2sin 34° sin 30° = 0.

1
Example 3.36 Show that cos 36° cos 72° cos 108° cos 144° = 6

Solution:

LH.S. = cos36° cos (90° — 18°) cos (90° + 18°) cos (180° — 36°)

= sin? 18° cos? 36°

_(vB-1 (VB 2_1
- 4 4 16
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sin 75° — sin 15°

E le 3.37 Simplif
xampie 1mpity cos 75° + cos 15°

Solution:

5 75° +15°\ . [ 75° —15°

sin 75° — sin 15° o 2 i 2

We have =

cos 75° + cos 15° 75° + 15° 75° — 15°
2co08| ——— Jcos | —

2 2

~ 2c0845%sin30° tan 30° — 1

~ 2c0s45°cos30° - /3

El Try to solve using sin 75° = cos 15° and cos 75° = sin 15°

Example 3.38 Show that cos 10° cos 30° cos 50° cos 70° = %

Solution: !
We know that cos (60° — A) cos A cos (60° + A) = 7 608 3A

cos 10° cos 30° cos 50° cos 70° = cos 30° [cos 10° cos 50° cos 70°]
= c0s30° [cos (60° — 10°) cos 10° cos (60° + 10°)]

B o] - 2() (9) -3

@ Exercise - 3.6

1. Express each of the following as a sum or difference

(1) sin 35° cos 28° (ii) sin4x cos 2z (iii) 2 sin 1060 cos 20 (iv) cos 50 cos 20 (v) sin 56 sin 40.
2. Express each of the following as a product

(1) sin 75° — sin 35°  (ii) cos 65° + cos 15° (iii) sin 50° + sin40° (iv) cos 35° — cos 75°.

1
3. Show that sin 12° sin 48° sin 54° = —.

A4 Show that o 2T 3T ‘47r 5 o ‘77r7 1
. Show that cos B cos B cos 5 cos G cos B cos 5 cos 5 = 128"

sin 8 cos x — sin 6 cos 3z
5. Show that - - = tan 2z.
cos 2z cos ¥ — sin 3z sin4dx

(cos @ — cos 30) (sin 86 + sin 26)
6. Show that =1
ow (sin 56 — sin #) (cos 46 — cos 66)

7. Prove that sin = + sin 2x + sin 3z = sin 2z (1 + 2 cos x).

in4 in 2
8. Prove that SIN AT S 2 = tan 3x.
cos4dx + cos2x

9. Prove that 1 + cos 2z + cos4x + cos 6x = 4 cos x cos 2% cos 3.
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0 30 1160
10. Prove that sin 3 sin 5 + sin 5 sin - = sin 20 sin 5.

1
11. Prove that cos (30° — A) cos (30° + A) + cos (45° — A) cos (45° + A) = cos2A + T
sinz + sin 3z + sin dx + sin 7z

12. Prove that = tan4z.
cos T + cos 3x + cos Hx + cos Tx

sin (4A — 2B) +sin (4B — 2A)

13. P that =1t A+ B).
rove tha cos (4A — 2B) + cos (4B — 2A) an ( A+ )
4 cos?2
14. Sh h A+ 15°%) — A—-15°")= ——— .
Show that cot (A + 15%) — tan ( 5%) [+ 2524

3.5.4 Conditional Trigonometric Identities

We know that trigonometric identities are true for all admissible values of the angle involved. There
are some trigonometric identities which satisfy the given additional conditions. Such identities are
called conditional trigonometric identities.

In this section, we shall make use of the relations obtained in the earlier sections to establish some
conditional identities based on some relationship.

Example 3.39 If A+ B 4 C' = m, prove the following
A B
(i) cos A+ cosB +cosC =1+ 4sin 3 sin (5) sin <%>
(i) si A\ . (B\ . [C 1
sin { 3 ) sin { 5 | sin { 5 5
(iii) 1 < cos A+ cos B+ cosC <

Solution:

A+ B A—-B
(i)cosA—l—cosB—l—cosC’chos( i )cos( 5 >+COSC

@)
o
»n
VRS
(VIS
|
N |
~__
+
[S—y
|
N}
8
=
no
7 N

I
—_
_|_
N
&z
=

—COS(

= 1-+4sin

Gi) Let u = sin (é) sin (§> sin (9)
> > 2
A+ B A—B @
[cos( >_cos( . )]SmE

2
[ (A—i—B) (A—B)] A+ B
cos g — oS cos —

D Qo Q oA
~ N~
~ - N o o

T O 1
o
[07]
o
Z
=)
7 N
| Q)
~_

1
2
1
2

N}
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A+ B A—B A+ B A+ B
cos? —5 — €os —— cos ; + 2u = 0, which is a quadratic in cos i .
A+ B
Since cos is real number, the above equation has a solution.

Thus, the discriminant b*> — 4ac > 0, which gives
5 A= s A—B - 1
-8

1
—8u20:>u§§cos

. (A . (B . (C
Hence,sin [ — |sin | — |sin | — | <
2 2 2

(iii)  From (i) and (ii), we have cos A 4+ cos B + cos C' > 1 and

COS

| = o

1
cosA+cosB+cosC <1+4x 3
Thus, we get 1 < cos A+ cos B + cosC <

[} 4

B
Singsingsing >0,if A+ B+C=m

DN | o

Example 3.40 Prove that

A B C . (m—A\ . (n—B\ . [(7#—-C .
81n§+sm§—|—81n§—1+4S1H<T>sm< 1 )sm( 1 ), ifA+B+C=n

Solution:

T A T B T C
LHS. = - — — - — — - — —
S COS(2 2)+cos<2 2)+cos<2 2)
B ™ A+ B B—A 5
= {2005 (§ 1 >cos( 1 )] + [1 2 sin
T

= Q ~Q »Q

~ ~—
o
o
n
VRS
oy
=~
S
NN
|
&
=
I/ -/
|+

+B A+B B-A

T
C —0 t5
= 1+ 2sin %—Z) 2 sin 4 g 4 sin 4 5 4

I
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Example 3.41 If A+ B + C = r, prove that cos® A + cos® B + cos’ C' = 1 — 2 cos A cos B cos C.

Solution:

cos? A+ cos’ B+ cos’C = = [2 cos® A + 2 cos® B + 2 cos? C]
[(1+cos2A) + (1 4+ cos2B) + (1 + cos2C)]
[(cos2A + cos2B) + cos 2C]

[2cos(A + B) cos(A — B) + (2cos®> C — 1)]

+ o+ o+
=N =N =N =

[-2cosCcos(A— B)+2cos’C —1] (A+B=7-C)

N W] W W W = =

- % [—2cos C' (cos(A — B) — cos C')]
= 1—cosC [cos(A — B) — cosC]

= 1—cosC [cos(A — B) + cos(A + B)]

= 1—cosC [2cos Acos B]

= 1—2cosAcos BcosC

@ Exercise - 3.7

1. If A+ B 4+ C = 180°, prove that
(i) sin2A + sin2B + sin2C' = 4 sin Asin Bsin C'
B C

A
(i) cos A+ cos B — cosC = —1+4cos§cosgsin§

(iii) sin® A + sin? B + sin® C' = 2 + 2 cos A cos B cos C'
(iv) sin? A + sin® B — sin? C' = 2sin A sin B cos C

A B B
V) tanEtaHE+tan—tan—+tan—tan—:1

2 2 2 2
o . . B C
(vi) smA—i—smB—l—smC’:4005500850085

(vii) sin(B+C — A) +sin(C + A — B) +sin(A+ B — C) = 4sin Asin BsinC.
2. If A+ B + C = 2s, then prove that sin(s — A) sin(s — B) + sin ssin(s — C') = sin A sin B.
2z 2y 2z 2x 2y 2z
3. Ifx+y+z:xy;,thenprovethat 2 + 1=y + sk I — 21—l
4. fA+B+C= 5> prove the following
(i) sin2A + sin2B + sin 2C = 4 cos A cos B cos C
(i) cos2A + cos2B 4 cos2C =1+ 4sin Asin BsinC.

5. If AABC'is aright triangle and if LA = g, then prove that

(i) cos’ B+ cos’C =1
(i) sin? B+ sin®C =1 5
(iii) cos B —cosC' = —1 + 2v/2 cos 5 sin 5
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3.6 Trigonometric equations

The equations containing trigonometric functions of unknown angles are known as trigonometric
equations. A solution of trigonometric equation is the value of unknown angle that satisfies the
equation. Unless the domain is restricted, the trigonometric equations have infinitely many solutions,
a fact due to the periodicity of trigonometric functions. Some of the equations may not have a solution
at all.

) . 3 . . )
For example, the equation sin § = —, does not have solution, since —1 < sinf < 1.

The equation sin# = 0 has infinitely many solutions given by § = £, 27, +37, ... and note
that these solutions occur periodically.

General Solution

The solution of a trigonometric equation giving all the admissible values obtained with the help of
periodicity of a trigonometric function is called the general solution of the equation.

Principal Solution

The smallest numerical value of unknown angle satisfying the equation in the interval [0, 27] (or)
[—7, 7] is called a principal solution. We shall take the interval [—, 7] for defining the principal
solution. Further, in this interval we may have two solutions. Even though both are valid solutions,
we take only the numerically smaller one. This helps us to define the principal domain of the
trigonometric functions in order to have their inverses.

.. . . .. . - T ..
Principal value of sine function lies in the interval ERE) and hence lies in I quadrant or IV

quadrant. Principal value of cosine function is in [0, 7] and hence in I quadrant or IT quadrant. Principal

value of tangent function is in and hence in I quadrant or IV quadrant.

s
272

IIIQ (i) Trigonometric equations are different from trigonometric identities, since trigonometric
identities are true for all admissible values of unknown angle #. But trigonometric
equations are valid only for particular values of unknown angle.

(i) There is no general method for solving trigonometric equations. However, one may
notice that some equations may be factorisable; some equations may be expressed in
terms of single function; some equations may be squared.

(iii) To find solutions to trigonometric equations, some times one may go for the technique
of squaring both sides. One has to take care as it can also produce false solutions
(extraneous solutions).

For example, to find solution for sinx — cosx = 1in 0 < z < 360°, we do squaring
on both sides to get (sinz — 1)* = cos? x, which gives 2sin z(sinz — 1) = 0. So, we
getx = 0, 5 7. Clearly x = 0 is a false solution. Thus, we have to check for correct

solutions, in the squaring process.
(iv) Mostly we write the solutions of trigonometric equations in radians.

Now, we find the solutions to different forms of trigonometrical equations.
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(i) To solve an equation of the formsinf =k (-1 <k <1):

Let « be the numerically smallest angle such that sin &« = k. Thus,

sinf = sin«

sinf —sinae = 0
0 0 —
2 cos % gin ; % — 0, which gives either
0 0 —
cos —ga:()or sin 204:0.
Now, cos +O[:O Now, sin _a:O,
0 0 —
—ga:(2n+1)g,n€Z Ta:mr,nEZ

O=02n+1)m—a,neZ..4) | 0=2nTt+a,n€Z ..(ii)

Combining (i) and (ii), we have sinf =sina = 60 =nn + (—1)"a,n € Z.

(ii) To solve an equation of the form cosf =k (-1 <k <1):

Let a be the numerically smallest angle such that cos & = k. Thus,

cosl = cosa

cosf —cosa = 0

2sin9+asina;0 =0
Sln9+asin9;a — 0, which gives either
sin9+a:0 or sin(g;a =0
sin = 0 gives sin — = 0 gives
ega:nﬂ,nEZ G_Ta:mr,nEZ

0=2nt—an€Z. ..G) | 0=2nt+an¢eZ ..[(i)

Combining (i) and (ii), we have cos§ = cosa = 0 = 2nm + o, n € Z.

(iii) To solve an equation of the form tanf = k (—oo < k < 00) :

Let « be the numerically smallest angle such that tan o = k. Thus,

tan @
sin @

0_
= tana=0=nr+a,n €

cos 6
sin (0 —a) =
Thus, tané

Trigonometry

tan o
sin o . .
= sinfcosa — cosfOsina =0

cos
0=0—-a=nm

nt+a,n € 7
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(iv) To solve an equation of the form a cosf + bsinf = ¢ :

b
Take a = rcosa, b=rsina. Then r =+Va?+ 0% tana=—, a#0
a
acosl +bsind = ¢c= rcosacosf +rsinasinfd = ¢
rcos(l —a) = ¢
(0-a) = - ‘ 6 (say)
cos(f —a) = - = ——— = cos
T Va2 +b? Y
0—a =2ntto,neZl

0 =2nr+a+to,nel.

ElQ The above method can be used only when ¢ < Va? + b2
If ¢ > Va? + b2, then the equation a cos f + bsin # = ¢ has no solution.

Now we summarise the general solution of trigonometric equations.

Trigonometric Equation General solution

sind =0 f=nmneZ

cosf =0 9:(2n+1)g;n€Z
tand =0 0=nmnel

sin @ = sin «, where « € [—g,g} 0=nr+(-1)"a,neZ

cos ) = cos v, where a € [0, 7] 0=2ntrta,necZ

tan # = tan a, where o € (—g,g) d=nTr+an€eZ

1
Example 3.42 Find the principal solution of (i) sin § = 3 (ii) sin 6 = —?

1
(iii) cosecl = —2 (iv) cosf = 3
Solution:
. . 1 .. .
(i) sinf = 3 > (0 so principal value lies in the I quadrant.
1
sinf = 3= sin%

Thus, 0 = % is the principal solution.

V3

(i) sinf = —
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We know that principal value of sinf lies in [— g, g} .

3
Since, sinf = —g < 0, the principal value of sin@ lies in the IV quadrant.

: V3 Nz A
sinf = _v3 = —sin (—) = sin (—§> .

2 3
Hence, 0 = —g is the principal solution.
(iii) cosect = —2
1 _ 1
cosec = —-2= — =—-2=5sinf=—-
sin ¢ 2
1
Since sinf = —5 < 0, the principal value of sin @ lies in the IV quadrant.
: 1 s . T
sinf = —— = —sin — = sin <——)
2 6 6
>
Thus, 0 = ~% is the principal solution.
1
. gL
(iv) cos 5

Principal value of cos @ lies in the I and II quadrant.

1
Since cos§ = 3 > (), the principal value of cos@ lies in the interval [0, g] .

s
= cos —
3

N —

cos ) =

Thus, 0 = g is the principal solution.

3
Example 3.43 Find the general solution of sin = —g

Solution: o
The general solution of sin f = sina, a € [——, —} Jis=nr+ (-1)"a,n €Z

272
sinf = —\/75 = sin (—%) ,

Thus the general solution is
s

3) ineZ .. (»1)

0 =nm+(-1)" <__> — na+ (_1)n+1 (

L | . ™
=~ In arriving at the above general solution, we took the principal value as — (§> with our

convention that principal value is the numerically smallest one in the interval [—m, 7v|. Now
through this example, we shall justify that the principal value may also be taken in [0, 27] ,
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as we mentioned in the definition of principle solution. If we take the principal solution in
4
the interval [0, 27], then the principal solution is § = ?ﬂ and the general solution is
dr

0 =nm+(—1)" (?) ,nEZ, 4% € [0,2n] ... (i)

From (ii), forn =0,—-1,1,-2,2,...
) ) 47 —Tm —m —2m 107
the corresponding solutions are S T3 33 03
From (i), forn =0,—1,1,—-2,2,...
) ) —m =27 4m —Um 5w
the corresponding solutions are 53 030 g 03

In both the cases, we get the same set of solutions, but in different order. Thus, we have
justified that the principal solution can be taken either in [0, 27| or in [—7, 7.

Example 3.44 Find the general solution of
(i) secd = —2 (ii) tanf = V3

Solution:

(i) secl = —2

1
sec = —2 = cosf = —3

We know that the general solution of cosf = cosa,a € [0, 7], is § =2nTr +a,n € Z

1 2
Letus find « € [0, 7] such that cosa = g = <7r = %) = cos ?ﬂ
2w

SO, o0 = —.

3

2
Thus, the general solution is 6 = 2nw £ g, n € Z.
(i) tanf = \/§

tanf = /3 = tang
We know that the general solution of tan § = tan o, o € (—g, g) isd=nr+a,n€cZ

Thus, 0 = nw + g, n € 7, is the general solution.

Example 3.45 Solve 3 cos? ) = sin?§

Solution:

3cos’0 =1—cos’0 = cos’h =

00529—1—1_1 0590 — 1—co< 7T>_COS 27
2 1 Ty U 3) T 3

2
29:2n7r:|:§7r,n62:>9:nﬂ:|:g,n62.

A~ =

EIQ Try to solve by writing tan® 6 = 3.

129 3.6 Trigonometric equations



www.thtextbooks.in

Example 3.46 Solve sin z + sin bz = sin 3z

Solution:
Sin z + sin bz = sin 3x = 2sin 3x cos 2x = sin 3z

sin3x (2cos2z — 1) =0

1

Thus, eithersin 3z = 0 (or) cos2z = 5
Ifsin 3x = 0, then 3x:n7r:>x:%,n€Z ... (@)
1 T ..
IfcosQa::§:>cos2a::cos§ ... (1)

2x:2n7r:tg:>x:nﬂ:|:%,n62
. . ) nmw T
From (i) and (ii), we have the general solution x = 3 (or) x =nmw £ 5 n € 7.

Example 3.47 Solve cosx + sinx = cos 2z + sin 2x

Solution:

cosx + sinx = cos 2x + Sin 2z = cos & — cos 2 = sin2x — sinx

o T+ 2\ . 2r — x 9 20+ x\ . 2 — x
in in = in
S 5 S 5 Cos 5 S 5
2sin (3% sin (f) — 9¢0s (2% ) sin (f)

S 5 S 5) = cos 5 S 5

. (T . (3 3z
sin (§> {sm <7> — oS (7>] =0

Thus, either sin (g) =0 (or) sin (%) — cos (3;) =0.

When sin (f) =0 Tt o || 22 ) — || o2 ) =@
2 2 2
3
g:mr:>:c:2mr,n€Z. :>tan(7$> zlztan<%
3x n s N 2nw I T
— =+ -—=r=—+—.
2 4 3 6
.. 2n T
Thus, the general solution is x = 2n7 (or) x = = 4 5’ n € Z.
ind
R If sin = cos @, then 6 # (2n + 1)g,n € 7. So, we have bme =1
cos

Example 3.48 Solve the equation sin 90 = sin ¢
Solution:
sin 90 = sinf = sin 96 — sinf = 0
2cosHfsin4h =0
Either cos560 = 0 (or) sin46 = 0
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When cos 50 = 0 = 50 = (2n+1)g When, sin46 = 0 = 46 = nw

s nm
0= (2 1) — Z 0=— Z
= (n+)10,n€ = "€
. . .. v nm
Thus, the general solution of the given equation is = (2n + 1) 10’ 0= =" SYA

Example 3.49 Solve tan 2x = — cot (a: + g)

Solution:

tan2zr = t(—|— )—tn( aF 2z 4F )—tn 5—1—
= — 20 = Z ) = =
an 2z cot | x 3 a 5 7 5 a 5 7t

5 5
2p = n7r+%+:r,n€Z:>x= mr—l—%,nEZ.

Example 3.50 Solve sin z — 3sin 2z + sin 3z = cosx — 3 cos 2z + cos 3z

Solution:

sin x — 3sin 2x + sin 3x = cos & — 3 cos 2x + cos 3x
sin 3x + sin x — 3sin 2x = cos 3z + cosx — 3 cos 2x
2sin 2x cos x — 3sin 2z = 2 cos 2z cos x — 3 cos 2x
(sin2z — cos2x) (2cosx — 3) =0

Then, sin 2z — cos 2z = 0 since 2cosz — 3 # 0

sin2x:cos2:c:>tan2m:1:>x:ng%—%,nez.

Example 3.51 Solve sinz + cosz =1+ sinxcosz

Solution:

Let sinz + cosx =t
2 —1
2

= 1+2sinzcosz = > = sinzcosz =

Thus, the given equation becomes t?> — 2t +1=0=t =1

Hence,sinx + cosx = 1

1 1
\/§ (—sinx—l— —cosx) =1
V2 V2

ﬂcos(%—x>=1:>cos<g—x)=%

Thus, we have z — % = :I:% +2nm,n € Z

x:g+2n7r, or x =2nmw, n € 7.
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Example 3.52 Solve 2sin® 2 + sin? 22 = 2

Solution:

2sin® z 4 sin? 2z = 2 = 2sin’z 4 (2sinz cos z)* = 2
cos? (2 sin®z — 1) =0

1
Either cosz =0 or sin’z = 5

Lo
= gin? —

4
:>x:(2n+1)g,n€Z x:mri%,neZ How

N —

cosx =0 sin?z =

Thus the solution is z = (2n + 1)%, r=nr+ %,n € Z.

Example 3.53 Prove that for any a and b, —va? + b?> < asinf + bcos < Va? + b?

Solution:

sin 0 + cos 0

a b
Now, asinf +bcosf = Va2 + b? | ——— -
va? +b? Va? + b2

= Va? + b? [cos asin 6 + sin v cos 0]

a b
= Va2 + b2 sin(a+6)
Thus, |asin @ + bcos 0] < Va2 + b?
Hence, — Va2 + b2 < asinf + bcosd < vVa2 + b2.

where cos o« = sin o =

Example 3.54 Solve V3sinf — cosf = /2

Solution:
V3sin@ — cos = V2
Herea=—1;b=v3;c=v2;r = Va2 + b2 = 2.

Thus, the given equation can be rewritten as

V3 1 1

TSine— 50089: E
sin@cosi - cos@sin%
sin (9 — %) = sin%

9—%:n7r:|:(—1)”

= sin

AN

%,nGZ

Thus, 6 = nr + — + (-1)"

T
Znez.
6 n

4
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Example 3.55 Solve v/3tan?0 + (v/3 — 1) tanf — 1 =0
Solution:

V3tan?6 + <\/§_ 1) tanf — 1 =0
V3tan260 4+ v3tanh — tanf — 1 =0
(\/gtane— 1) (tanf+1) =0

Thus, either v/3tanf —1 =0 (or) tanf+1=0

If V3tanf —1 =0, then | Iftanf + 1 =0 then

1 _
tanQZ%:tan% tanfd = —1 = tan (%)

— 0= nr+ %,n €Z..G) | =0 =nr— %,n e 7Z...(ii)

From (i) and (ii) we have the general solution.

@ Exercise - 3.8

. Find the principal solution and general solutions of the following:
(i) sin § = —% (ii) cot @ = v/3  (iii) tan 6 = —%.
. Solve the following equations for which solutions lies in the interval 0° < 6 < 360°
(i) sin'z =sin’x
(i) 2cos’z +1= —3cosx
(iii) 2sin’z+ 1 = 3sinz
(iv) cos2x =1 — 3sinx.
. Solve the following equations:
(1) sinbx — sinx = cos 3x
(i) 2cos’f +3sinf —3=0
(iii) cos + cos 360 = 2 cos 20
(iv) sinf + sin 36 +sin 50 = 0
(v) sin260 — cos 260 — sinf + cosf = 0
(vi) sinf + cosf = V2
(vii) sinf + V3 cosf =1
(viii) cot @ + cosech = /3

2
(ix) tanf + tan <9+ %) + tan (6’+ ?ﬁ) =3

V541
4
(xi) 2cos’z —Tcosz+3=0

(x) cos260 =
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3.7 Properties of Triangle

One important use of trigonometry is to solve practical problems
that can be modeled by a triangle. Determination of all the sides
and angles of a triangle is referred as solving the triangle. In
any triangle, the three sides and three angles are called basic
elements of a triangle. Pythagorean theorem plays a vital role in
finding solution of the right triangle. The law of sines and the
law of cosines are important tools that can be used effectively in
solving an oblique triangle ( a triangle with no right angle). In
this section, we shall discuss the relationship between the sides
and angles of a triangle and derive the law of sines and the law
of cosines.

Notation: Let ABC be a triangle. The angles of AABC corre-
sponding to the vertices A, B, C' are denoted by A, B, C' them-
selves. The sides opposite to the angles A, B, C' are denoted by
a, b, c respectively. Also we use the symbol A to denote the area
of a triangle.

Figure 3.17

The circle which passes through the three vertices of a triangle is called circumcircle of the
triangle. The centre and the radius R of the circumcircle are known as circumcentre and circumradius
respectively.

Elg In AABC,wehave A+ B+C =manda+b>c¢c, b+c>a, a+c>b.

The Law of Sines or Sine Formula

3.7.1 Law of Sines

The Law of Sines is a relationship between the angles and the sides of a triangle. While solving a
triangle, the law of sines can be effectively used in the following situations:

(i) To find an angle if two sides and one angle which is not included, by them are given.
(i) To find a side, if two angles and one side which is opposite to one of given angles, are given.
Theorem 3.1 (Law of Sines): In any triangle, the leggths of the sides are proportional to the sines of
a c

= = = 2R where R is the circumradius
sin A sin B sin C'

the opposite angles. That is, in AABC,
of the triangle.

Proof. The angle A of the AABC is either acute or right or obtuse. Let O be the centre of the
circumcircle of AABC and R, its radius.

Z A isacute L A=90° Z A 1isobtuse

Figure 3.18
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CaseI: ZA isacute.

Produce BO to meet the circle at D.
/BDC = /BAC = A

ZBCD = 90°

. BC . a a
sméBDC—m or s1nA—E:> A

2R

Case II: ZA isright angle.

In this case O must be on the side BC' of the AABC.
a BC 2R a

oW, sinA  sin90° 1 = sin A i
Case III: ZA is obtuse
Produce BO to meet the circle at D.
/BDC + Z/BAC = 180°
/BDC =180° — ZBAC =180° — A
/BCD = 90°
) BC _ o .. a a
sin /BDC = 5D T sin(180° — A) =sin A = R A 2R
In each case, we have — =2R
sin A
. . b c
Similarly, by considering angles B and C, we can prove that — = 2R and — = 2R
) sin B sin C'
respectively.
Thus, a4 b ¢ 2R.

sinA sinB sinC

@ (i) The Law of Sines can be written as a collection of three equations

a_sinA a_sinA_ b_sinB_

b sinB’ ¢ sinC’ c sinC’
(i1) The Law of Sines says that the sides of a triangle are proportional to the sines of their
opposite angles.
(ii1) Using the Law of Sines, it is impossible to find the solution to a triangle given two sides
and the included angle.
(iv) An interesting geometric consequence of the Law of Sines is that the largest side of any
triangle is opposite to the largest angle. (Prove)

Napier’s Formula
Theorem 3.2: In AABC, we have

A—B_a—b C

(1) tan 5 —a+bcot§
(i1) tan _C:b_ccoté
2 b+c 2
i) tan S A =Tt B
2 c+a 2
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Proof.
sinA  sinB sinC
a—>b C B 2Rsin A — 2Rsin B C

Now, —— cot — = t—
O Y T ORsmA+ 2RsnB U2

_sinA—sinB C

T smA+snB 'Y
A+B . A-B

2 cos sin
_ 2 2 ~
. A+ B A—-B 2
2 sin CoS
2 2

A+ B A—-B C
= cot tan cot —
2 2 2

= cot (90° - %) tan A—B cot

‘We know the sine formula: 2R

= tan — tan
2 2 2 2

Similarly we can prove the other two results.

3.7.2 Law of Cosines

When two sides and included angle or the three sides of a triangle are given, the triangle cannot be
solved using the sine formula. In such a situation, the law of cosines can be used to solve the triangle.
Also, the Law of Cosines is used to derive a formula for finding the area of a triangle given two sides
and the included angle.

Theorem 3.3 (The Law of Cosines): In AABC, we have

b +c*—a? 2 +a® -1 a? +b? — 2
R e Y S s S B s
oS S : cos e © cos o
Proof. In AABC, draw AD 1 BC. A

In AABD, we have AB?> = AD? + BD? = ¢ = AD? + BD?.
Now, we find the values of AD and BD in terms of the elements

of AABC. b
AD . .
0= sinC = AD =bsinC
BD =BC —-DC =a—bcosC B '73 a o
2= (bsinC)2 + (a — bCOSC)2
Figure 3.19

= b?sin® C' + a® + b* cos® C' — 2ab cos C

=a®+ b (sin2 C + cos? C’) — 2abcos C

=a®+b* — 2abcos C

a® 4+ b* —

Thus, ¢ = a® + b* — 2abcos C' or cosC =
2ab

Similarly, we can prove the other two results, namely
b+ — a?
2bc
A+a* -0

2ca

a’> =0+ —2bccos A or cos A =

b? = c? +a®> —2cacos B or cos B =
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El) (i) a® = b? + c® — 2bc cos A says that the square of a side is the sum of squares of other two
sides diminished by twice the product of those two sides and the cosine of the included
angle. Also one formula will give the other formula by cycling through the letters a, b, c.

(ii)) The Laws of Cosine for right triangles reduce to Pythagorean theorem. Thus, the Law
of cosines can be viewed as a generalisation of Pythagorean theorem.

(iii)) The advantage of using law of cosines over law of sines is that unlike the sine function,
the cosine function distinguishes between acute and obtuse angles. If cosine of an angle
is positive, then it is acute. Otherwise, it is obtuse.

(iv) The Law of Cosines says : The direct route is the shortest. Let us explain this. In a
AABC, ¢ = a® + b* — 2abcos C. Since — cos C' < 1 we have ¢ < a® + b% + 2ab.
Thus, we have ¢ < a + b. Hence, In AABC,wehavea <b+c¢, b<c+a, c<a-+b

(v) When using the law of cosines, it is always best to find the measure of the largest
unknown angle first, since this will give us the obtuse angle of the triangle if there
is one such angle.

3.7.3 Projection Formula
Theorem 3.4: Ina AABC, we have

(i)a=bcosC +ccosB, (ii))b=ccosA+acosC, (iii)c=acosB + bcos A

Proof. In AABC', we have a = BC. Draw AD 1 BC.

a = BC=BD+ DC

BD DC
= ABAB+ ACAC

= (cos B)c + (cos C)b
a = bcosC + ccos B

B C

Similarly, one can prove the other two projection formulas.

D a
Figure 3.20

ElQ a = bcosC + ccos B says that a = projection of b on a + projection of ¢ on a
Thus, a side of triangle is equal to sum of the projections of other two sides on it.

3.7.4 Area of the Triangle
We shall use some elements of an oblique triangle and the sine function to

1
find the area of the triangle. Recall that area formula for AABC' is —bh A

where b is the base and h is the height. For oblique triangle, we must 121nd
h before using the area formula.

Theorem 3.5: In AABC), area of the triangle is

A:labsinCzlbcsinAzlacsinB / b
2 2 2
Proof. In NABC', draw AD 1 BC
AD ) :
In AADC,E:smC:AD:bsmC B D 4 C
Thus, A = % x base x height = % absin C. Figure 3.21

Similarly we can derive the other two results.
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R (1) The formula for the area of an oblique triangle says that the
area is equal to one half of the product of two sides and the
sine of their included angle.

(i) The area formula is used to compute the area of the segment
of a circle. Segment of a circle is the region between a chord
and the arc it cuts off.

Let r be the radius of a circle and # be the angle subtended
by the chord AB at the centre.

Figure 3.22
Area of the segment ABD = Area of the sector — Area of the AOAB
1
= 57‘29 — 57"2 sin ¢

1, )
=37 (0 — sin0)
(iii) The area formula of a triangle is viewed as generalisation of area formula of a right
triangle.
(iv) In the above formula, it is clear that the measure of third side is not required in finding
the area of the triangles. Also there is no need of finding the altitude of the triangle in
order to find its area.

Example 3.56

The Government plans to have a circular zoological
park of diameter 8 km. A separate area in the form
of a segment formed by a chord of length 4 km is to
be allotted exclusively for a veterinary hospital in the
park. Find the area of the segment to be allotted for the
veterinary hospital.

Solution:
Let AB be the chord and O be the centre of the circular park. Figure 3.23
Let ZAOB = 6.

Area of the segment = Area of the sector — Area of AOAB.

1, L, .
= 27" 0 2r sin 6
1
= (5 X 42) [0 —sinf] =8[0 —sinf]  ...(1)
42 442 42 1
But COSO—W—§
T
Th = —
us, 0 3

From (i), area of the the segment to be allotted for the veterinary hospital

- 8[%—\?] :%[%—3@] m?
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3.7.5 Half-Angle formula
Theorem 3.6: In AABC

A [(s=b)(s—¢) .. A [s(s—a)
(1) sin il A e— (11) cos 5= o
—b)(s — b
(iii) tan — = w, where s is the semi-perimeter of AABC' given by s = atote
2 s(s —a) 2
Proof. (i)
A \/'QA \/l—cosA 1 b+ —a?
sih— = H4q/sin“— =4/ ——=4/=-[1— ——
2 2 2 2 2bc
B \/ch B —c+a®>  [a2—(b—c)
B 4bc B 4be
_\/(a+b—c)(a—b+c)_\/(a+b+c—20)(a+b—|—c—2b)
N 4bc B 4bc
\/25—2() 23—20)_\/(5—())(3—0)
4bc B bc
A —b)(s —
Thus, sin 3 = —S l))is )

Similarly, we can prove the other two results.

@ The other half-angle formulas are

Sm_ /(s —c)(s—a) smg: [(s —a)(s—b)
2 ab
B C s(s —c)
cos — \/ cos — = {/
2 2 ab
(s—a s—c) -

tn n (s—a)(s—0)
n— — ~ /N 7 n— = A S
2 s(s—=0b) 2 s(s—c)

Corollary: sin A = 2sin é cos — = 2 (s —b)(s—¢) \/5(5 —a)
2 2 bC bc

sin A = b%\/s(s —a)(s—b)(s—c)

Area of a triangle (Heron’s Formula )

Heron’s formula is named after Hero of Alexendria, a Greek Engineer and Mathematician in
(CE 10 - 70). This formula is used only when all the three sides are known.

Theorem 3.7: In AABC, A = \/s(s — a)(s — b)(s — c) where s is the semi-perimeter of AABC.
Proof.

1 ) 1 . C C
A = §absmC = éab (2 81115(:05 5)

= ab\/(s — a)l()s — b)\/s(sa; d = /s(s —a)(s — b)(s — ¢)

a
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R (i) Using Heron’s formula , Pythagorean theorem can be proved for right triangle and
conversely, using Pythagorean theorem for right triangle one can establish Heron’s area
formula.

(ii) If area of a triangle is given as an integer, then Heron’s formula is useful in finding
triangles with integer sides.
(iii) If the perimeter of a triangle is fixed, then Heron’s formula is useful for finding triangles
having integer area and integer sides.
For example, if the perimeter of a triangle is 100m, then there is a triangle with sides
32 m, 34 m, 34 m and area 480 m?.

Example 3.57 In a AABC, prove that b* sin 2C 4+ ¢* sin 2B = 2bcsin A.

Solution:
b c

a
sinA sinB sinC

Thus, a =2RsinA; b=2RsinB; c¢=2RsinC

2R

The Sine formula is,

b*sin2C + ¢®sin2B = 4R*sin® Bsin2C + 4R’ sin” C'sin 2B
= 4R? (2 sin® B'sin C' cos C' + 2sin® C'sin B cos B)
= 8R?sin Bsin C (sin B cos C' + sin C cos B)
8R*sin Bsin C'sin(B + C)
= 8R?sin Bsin C'sin (1 — A) = 8R*sin Bsin C'sin A

— 8R? (;R) (%) sin A = 2bcsin A.

B-C
Example 3.58 In a AABC, prove that sin ( 5 ) = CoS —.

Solution:

b
The Sine formula is, ¢

sin A - sin B - sin C' -
b—c A_2RsinB—2RsinC’ A

g T 2Rsin A 9

9 sin B-C B+C
S 5 cos 5 A

A A cos
2sin — cos — 2
2 2

) B=0C ., A
s1n( 5 )cos (90 —5)
n 5O mn é
i 2 )2
.(B—C)
= sin .
2
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Example 3.59 If the three angles in a triangle are in the ratio 1 : 2 : 3, then prove that the
corresponding sides are in the ratio 1 : /3 : 2.

Solution:
Let the angles be 0, 26, 36.

Then 0 + 20 + 30 = 180°

Thus, 6 = 30°
a b ¢
sinA sinB sinC’
a b
sin30°  sin60°  sin90°
a:b:c=sin30°:sin60° : sin 90°

1
zﬁzgzlzl:\/g:Q

we have,

Using the sine formula,

Example 3.60 In a AABC, prove that
(b+c)cosA+ (c+a)cosB+ (a+b)cosC=a+b+c

Solution:

LHS = bcosA +ccosA+ccosB +acosB +acosC +beosC
= bcosC +ccos B+ ccos A+ acosC +bcos A+ acos B
= a+ b+ c [by projection formula]

, a*+b* 1+ cos(A— B)cosC
Example 3.61 In a triangle ABC, prove that T 11 cos (A—C)cos B

Solution:

b
The sine formula is, €

sinA  sinB sinC
a4+ (2Rsin A)® 4 (2Rsin B)?
@2+ (2RsinA) + (2RsinC)’
sin? A +sin? B 1— cos? A +sin’ B

sin A +sin2C 1 —cos2 A +sin?C

1— (cos® A—sin® B) 1 —cos(A+ B)cos(4A— B)
1— (cos2 A—sin?C) 1 —cos(A+ C)cos(A—C)
1+ cos(A— B)cosC

1+ cos(A—C)cosB

2R

LHS =

141 3.7 Properties of Triangle



www.thtextbooks.in

Example 3.62 Derive cosine formula using the law of sines ina AABC.
Solution: b
c
The 1 f Sines: = = =2
¢ law of Sines sinA sinB  sinC 1
¥+ —a®>  (2Rsin B)’> 4 (2RsinC)* — (2Rsin A)?
2bc - 2 (2Rsin B) (2RsinC)
_ sin? B +sin(C + A) sin(C — A)
B 2sin Bsin C'
_ sin B [sin B +sin(C' — A)]
- 2sin Bsin C'
. . 4
_ sin(C' + A) —|— sin(C ) ~cosA
2sinC
P¥+E—a® . . : .
Thus, cos A = ok Similarly we can derive other two cosine formulas.
c

Example 3.63 Using Heron’s formula, show that the equilateral triangle has the maximum area for
any fixed perimeter. [Hint: In zyz < k, maximum occurs when z = y = z].

Solution:

Let ABC be a triangle with constant perimeter 2s. Thus s is constant.
We know that A = \/s(s — a)(s — b)(s — ¢

Observe that A is maximum, when (s — a)(s — b))(s — ¢) is maximum.

(s—a)+(s—b)+(s—c¢)
3

Now, (s — a)(s — b)(s — ¢) < ( ) - % [G.M < A.M)

Thus, we get (s —a)(s —b)(s —¢) <

l\DlCtJ
3

Equality occurs when s —a = s —b = s — c¢. Thatis, when a = b = ¢, maximum of

(s—a)(s — b)) (s — c) is%

Thus, for a fixed perimeter 2s, the area of a triangle is maximum when a = b = c.

Hence, for a fixed perimeter, the equilateral triangle has the maximum area and the maximum area

3 2
is given by A = s (5°) — sq.units.

27 3v3

Exercise - 3.9

sinA  sin(A - B)
sinC sin(B — O)
2. The angles of a triangle ABC, are in Arithmetic Progression and if b : ¢ = /3 : /2, find ZA.

1. Ina AABC, if , prove that a?,b%, ¢? are in Arithmetic Progression.
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in A
Ina AABC, if cosC = e ,
2sin B
sinB_c—acosB
sinC  b—acosC’
Ina AABC, prove that a cos A + bcos B + ccos C' = 2asin Bsin C.

show that the triangle is isosceles.

B-C
.InaAABC,AA—60°.Provethatb+c—2acos( 5 )

. Ina AABC, prove the following

L. (A B A
(i) asin <§+B) = (b+c)sm§

A
(ii) a(cos B + cosC) = 2(b + ¢) sin® 5
2 2 -
(iii) a® —c?  sin(A—C)
b2 sin(A+C)
. . asin(B —C) bsm(C’ A)  csin(A - B)
(iv) b2 _ 2 2 _ a2 a2
a+b A+ B A-B
v) a_b—tan( 5 )Cot(T).

In a AABC, prove that (a? — b* + ¢®) tan B = (a* + b? — ¢*) tan C.

An Engineer has to develop a triangular shaped park with a perimeter 120 m in a village. The park
to be developed must be of maximum area. Find out the dimensions of the park.

A rope of length 12 m is given. Find the largest area of the triangle formed by this rope and find
the dimensions of the triangle so formed.

Derive Projection formula from (i) Law of sines, (ii) Law of cosines.

8 Application to Triangle

Much of architecture and engineering relies on triangular support on any structure where stability

is

desired. Trigonometry helps to calculate the correct angle for the triangular support. Also

trigonometry envisages the builders to correctly layout a curved structure. For a right triangle, any
two information with atleast one side say 5SS, S'A are sufficient to find the remaining elements of the
triangle. But, to find the solution of an oblique triangle we need three elements with atleast one side.
If any three elements with atleast one side of a triangle are given, then the Law of Sines, the Law of
Cosines, the Projection formula can be used to find the other three elements.

Working Rule:

In a right triangle, two sides determine the third side via the Pythagorean theorem and one acute
angle determine the other by using the fact that acute angles in a right triangle are complementary.
If all the sides of a triangle are given, then we can use either cosine formula or half-angle formula
to calculate all the angles of the triangle.

If any two angles and any one of the sides opposite to given angles are given, then we can use sine
formula to calculate the other sides.

If any two sides of a triangle and the included angle are given, we cannot use the Law of sines;
but then we can use the law of cosines to calculate other side and other angles of the triangle. In
this case we have a unique triangle.

All methods of solving an oblique triangle require that the length of atleast one side must be
provided.
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Let us summarise the working rule to solve an oblique triangle in the following table

Given Information
Oblique triangle SAA SSA* SAS SSS AAA
(all angles are acute or
one angle is obtuse

Details and Law of | #(ambiguity | The given angle must | Law of Cosines; | Infinite

Application sines arises) be included angle; First find number

for solutions Either law of Cosines the largest of triangles
or tangents angle

# Angle is not included; We may have more than one triangle;

Application of law of sines yields three cases: No solution or one triangle or two triangles.

Suppose a, b, A are known. Let h = bsin A
If a < h, there is no triangle, If a = h, then it is right triangle.
If a > h and a < b, we have two triangles.
If a > b, we have only one triangle.
* SSA means Side, Side and Angle

Example 3.64 Ina AABC,a=3,b=5andc=17.
Find the values of cos A, cos B and cos C.

Solution:
By Cosine formula,

P+d—a® 5+7-3 13

cosd = 2(5)(7) 14

11 1
imilarl B = — =——.
Similarly, cos 7 cos C 5

Solution:
Given that A = 30°, B = 60°,C' = 180° — (A + B) = 90°
Using sine formula,

a b o
sinA  sinB sinC
a b 10

sin30°  sin60°  sin90°

1
10sin30° 10 5) .

sin 90° 1
3
10 (g)
10 sin 60°
~ sin90° 1 _5\/§

Solution:
Given that a = 2v/2,b = 2v/3 and C' = 75°.
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a’® + b — 2
2ab

8+12—¢2 V3-1 8+412—¢2
cos 75° = = — :>c=\/§<\/§+1>
8\/6 2\/§ 8\/6

B2 — a2 1
Also, cos A = 2 C Z% _ ° Thus A = 60°, B = 180° — (A+ C) = 45°.
2bc V2

Using cosine formula, cos C' =

Example 3.67 Find the area of the triangle whose sides are 13 cm, 14 ¢m and 15 cm.

Solution:

b 1 144+1
We know that s = u = u

> ° 2
Area of a triangle = \/s(s — a)(s — b)(s — ¢)
= \/21(21 — 13)(21 — 14)(21 — 15) = 84 sq.cm.

=21 em.

8A?
Example 3.68 In any AABC, prove that a cos A + bcos B + ccos C' = et

abe
Solution:

We know that a cos A + bcos B + ccos C' = 2asin B sin C'
2\ 2\ N2
Thus, acos A +bcos B + ccosC = 2a (—) ( ) :8—

ac “ab abc

Example 3.69

Suppose that there are two cell phone towers within range of a cell 29
phone. The two towers are located at 6 km apart along a straight O gt
highway, running east to west and the cell phone is north of the é x \& B
highway. The signal is 5 km from the first tower and v/31 km

from the second tower. Determine the position of the cell phone

north and east of the first tower and how far it is from the highway. Figure 3.24

Solution:

Let 6 be the position of the cell phone from north to east of the first tower.
Then, using the cosine formula, we have,

2
<\/3_1) — 52462 —2x5x6cosf

31 = 25+ 36 — 60cosf

1
cosf = 5:9:60°

Let z be the distance of the cell phone’s position from the highway.
5% 43
2

km.

Then, sinf = % = 1 = 5sinf = 5sin 60° =
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Example 3.70

Suppose that a boat travels 10 km from the
port towards east and then turns 60° to its
left. If the boat travels further 8 km, how far

from the port is the boat? Port
Solution: P 10 km
Let B P be the required distance. Figure 3.25

By using the cosine formula, we have,

BP? = 102+ 8% — 2 x x10 x 8 X cos 120° = 244km = BP = 2v61 km

Example 3.71

Suppose two radar stations located 100km apart, each detect a
fighter aircraft between them. The angle of elevation measured
by the first station is 30°, whereas the angle of elevation mea-
sured by the second station is 45°. Find the altitude of the aircraft :
at that instant. R, 00 N R

Solution: Figure 3.26

Let R, and R be two radar stations and A be the position of fighter aircraft at the time of detection.
Let x be the required altitude of the aircraft.
Draw L AN from A to R, Ry meeting at V.

ZA = 180° — (30° 4 45°) = 105°

200 (V3 -1)

a 100 100 1

this, = 100 w0 1 BOWETY) s (vB- 1)
% Sin4se smios  ° V3+1 x\/ﬁ 2 00x (V3 "
2v/2

Now, sin30° = = = 7 = 50 x (\/5—1) -
a

Exercise - 3.10

. Determine whether the following measurements produce one triangle, two triangles or no triangle:
/B = 88°,a = 23,b = 2. Solve if solution exists.

. If the sides of a AABC are a = 4,b = 6 and ¢ = 8, then show that 4 cos B 4+ 3 cos C' = 2.

3. Ina AABC,ifa =+/3 — 1,b= V3 + 1 and C = 60°, find the other side and other two angles.

AN D

b2 + 2 — a?
4cot A

.Ina AABC,ifa =12 c¢m, b = 8 cm and C = 30°, then show that its area is 24 sq.cm.

. Ina AABC,if a = 18 ecm, b = 24 ¢m and ¢ = 30 ¢m, then show that its area is 216 sq.cm.

Two soldiers A and B in two different underground bunkers on a straight road, spot an intruder at

the top of a hill. The angle of elevation of the intruder from A and B to the ground level in the

eastern direction are 30° and 45° respectively. If A and B stand 5 km apart, find the distance of the

intruder from B.

. A researcher wants to determine the width of a pond from east to west, which cannot be done by
actual measurement. From a point P, he finds the distance to the eastern-most point of the pond to

. In any AABC, prove that the area A =
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be 8 km, while the distance to the western most point from P to be 6 £m. If the angle between the
two lines of sight is 60°, find the width of the pond.

9. Two Navy helicopters A and B are flying over the Bay of Bengal at same altitude from the sea
level to search a missing boat. Pilots of both the helicopters sight the boat at the same time while
they are apart 10 km from each other. If the distance of the boat from A is 6 km and if the line
segment AB subtends 60° at the boat, find the distance of the boat from B.

10. A straight tunnel is to be made through a mountain. A surveyor observes the two extremities A and
B of the tunnel to be built from a point P in front of the mountain. If AP = 3km, BP = 5 km
and ZAPB = 120°, then find the length of the tunnel to be built.

11. A farmer wants to purchase a triangular shaped land with sides 120 feet and 60feet and the
angle included between these two sides is 60°. If the land costs 500 per sq.ft, find the amount he
needed to purchase the land. Also find the perimeter of the land.

12. A fighter jet has to hit a small target by flying a horizontal distance. When the target is sighted,
the pilot measures the angle of depression to be 30°. If after 100 £m, the target has an angle of
depression of 60°, how far is the target from the fighter jet at that instant?

13. A plane is 1 km from one landmark and 2 km from another. From the planes point of view the
land between them subtends an angle of 45°. How far apart are the landmarks?

14. A man starts his morning walk at a point A reaches two points B and C' and finally back to A such
that /A = 60° and /B = 45°, AC' = 4km in the AABC' Find the total distance he covered
during his morning walk.

15. Two vehicles leave the same place P at the same time moving along two different roads. One
vehicle moves at an average speed of 60km /hr and the other vehicle moves at an average speed
of 80 km/hr. After half an hour the vehicle reach the destinations A and B. If AB subtends 60°
at the initial point P, then find AB.

16. Suppose that a satellite in space, an earth station and the centre of earth all lie in the same plane.
Let r be the radius of earth and R be the distance from the centre of earth to the satellite. Let d be
the distance from the earth station to the satellite. Let 30° be the angle of elevation from the earth
station to the satellite. If the line segment connecting earth station and satellite subtends angle « at

2
the centre of earth, then prove that d = R\/ 1+ (%) — 2% COoS .

3.9 Inverse Trigonometric Functions

A function f(z) has inverse if and only if it is one-to-one and onto. Thus, inverse of a function cannot
be defined if it fails to be one-to-one. However, if we restrict the domain suitably, we can make the
function to be one-to-one in the restricted domain. For example, y = 22 is not one-to-one for all real
numbers. But y = 22 is one-to-one and onto either for z > 0 or < 0. Hence y = 22,z > 0 has the
inverse f~!(x) = \/z,x > 0. Now, owing to their periodicity, none of six trigonometric functions is
one-to-one over their natural domains. We shall restrict their domains so that trigonometric functions
are one-to-one enabling the existence of their inverse functions. This restriction can be done in many
ways once again due to their periodicity. The conventional choices for the restricted domains are
arbitrary but they have some important characteristics. Each restricted domain includes the number 0
and some positive angles and the image of restricted domain contains the entire range.

Let us define the inverse of sine function. Consider f(r) = sinz,z € [, 7]. Then, sinz is
one-to-one and onto in this restricted domain. Hence, the inverse of sine function exists. Note that
f'(y) = z if and only if f(z) = y. We write f~'(z) = sin™'(z). Thus, inverse of sine is defined as
sin~'(y) = x if and only if sinz = y.

Clearly, sin z : 55 [—~1,1]and sin ™'z : [-1,1] — [—g, g} . Thus, sin™" ¢ is an angle
whose sine is equal to ¢ and which is located in [—g, g} . Similarly we can define the other inverse
trigonometric functions.

147 3.9 Inverse Trigonometric Functions



www.thtextbooks.in

The inverse functions sin 'z, cos 'z, tan 'z, cosec '(x), sec '(x), cot”'(x) are

called inverse circular functions. For the function y = sin z, there are infinitely many angles  which
satisfy sinz = ¢, —1 < ¢t < 1. Of these infinite set of values, there is one which lies in the interval

T . : . - .
[—5, 5] . This angle is called the principal angle and denoted by sin~' ¢. The principal value of
an inverse function is that value of the general value which is numerically least. It may be positive
or negative. When there are two values, one is positive and the other is negative such that they are
numerically equal, then the principal value is the positive one.

We shall illustrate below the restricted domains, ranges of trigonometric functions and the

domains, ranges of the corresponding inverse functions.

1) sinz : [-F,2] — [-1,1]; sin” x: [—1,1] [—g,g}

(ii) cosx : [0, 7] — [~1,1]; cos ' x: [~1,1] — [0, 7]
(iii) tanz : (—3,%) = (—00,00) ; tan™' z : (—o00, 00) — <—g,g)
(iv) cotz : (0,m) = (—00,00) ; cot ' (—00,00) — (0,7)

(v) cosecz : [-Z,2] — {0} = R —(—1,1); cosec 'z : R — (—=1,1) — [—g, g] — {0}

(vi) secm:[O,w]—{%}—)R—(—l,l); sec_lx:R—(—l,l)ﬁ[0777]_{E}

2

1
sinz’
(ii) Another notation for sin~! z is arcsin = due to Sir. John FW Herschel (1813).

(iii) While discussing the inverse of sine function, we confined to y = sinz, =5 < z <
and

r=sin"ly -1<y<1
(iv) The graph of inverse function f~* is the reflexion of the graph of f about the line y = x.
Thus, if (a,b) € f then (b,a) € f~'.

(i) sin~! z does not mean

NTE

Principal values of inverse trigonometric functions are listed below:

Principal value for x > 0 | Principal value for x < 0
0 <sin !(z) < g —g <sin"*(z) <0
0 <cos'(z) < g g <cos Hz) <
0 <tan '(z) < g —g <tan"'(z) <0
1 T —1
0 < cot (x)§§ —— <cot (z) <0
0 <sec !(x) < g g <sec l(z)<m
0 < cosec () < g —g < cosec ' (x) < 0
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E{ (i) Properties, graphs, theorems on inverse trigonometric functions will be studied in higher
secondary second year.
(ii) Inverse trigonometric functions are much useful in the evaluation of some integrals
which will be studied later.

3 2
Example 3.72 Find the principal value of (i) sin~* (%_) , (ii) cosec ™! (

7)
(iii) tan~* (\%) :

Solution:

2
(i) Let cosec ! (—) =1y, where — g <y< g

V3

2 .
= COSEC Yy = —= = SInY =

V3

2 s

Thus, the principal value of cosec™ (—) = —
— T T

iii) Let tan ' [ — | =y, where — = <y < —
(i11) Let tan (\/§> Y, where 5 <y< 5
t L £ ( W) . T
any = ——— any = tan ( —— = ——
Y \/3 Yy 6 Yy 6
—1 78

Thus the principal value of tan~! (—) = ——.

Exercise - 3.11

1 3
1. Find the principal value of (i) sin~! —  (ii) cos V3 (iii) cosec 1(—1) (iv) sec™! (—ﬁ)

V2 2
(v) tan~! (\/5)

2. A man standing directly opposite to one side of a road of width = meter views a circular shaped
traffic green signal of diameter a meter on the other side of the road. The bottom of the green
signal is b meter height from the horizontal level of viewer’s eye. If o denotes the angle subtended
by the diameter of the green signal at the viewer’s eye, then prove that

a =tan™! (a+b) —tan~! <é) .
x x
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Exercise - 3.12

Choose the correct answer or the most suitable answer:

1 L V3 =
" cos80° sin80°
(1) v2 2)V3 (3)2 44
2. If cos 28° 4 sin 28° = k*, then cos 17° is equal to
k3 k3 k3 k3
1) — 2) ——— 3) +— 4) ——
(1) NG (2) NG ) (3) }ﬂ 4) NG
3. The maximum value of 4 sin® z + 3 cos® z + sin 5 + cos 5 is
(D442 (2)3+ V2 3)9 4) 4
5 7
4. (1 + cos g) <1 + cos 3%) (1 + cos %) (1 + cos g) =
1 1 1 1
1) = 2) = 3) — 4) —
( )8 ( )2 (3) 7 4) 7
5. frm <20 < 3;7 then \/2+ V2 + 2 cos 46 equals to
(1) —2cosf (2) —2sinf (3) 2cosb (4) 2sind
tan 140° — tan 130°
. If tan40° = A, th —
6. Iftan M T tan 140° tan 130°
1— )\ 14+ A2 14+ A2 11—\
2 4
(D 3 (2) 3 (3) N 4) N
7. cos1°+cos2° +cos3° + ...+ cosl79° =
(HO 21 3)-1 4) 89
1
8. Let fr(z) = z [sin® 2 + cos” | where z € Rand k > 1. Then fy(z) — fo(z) =
1 1 1 1
1) - 2) — 3) = 4) -
( )4 (2) 12 ( )6 ( )3
9. Which of the following is not true?
3 1
(1)51119:—1 (2) cost = —1 (3) tanf = 25 4) seCH:Z
10. cos 26 cos 2¢ + sin” (0 — ¢) — sin® (6 + ¢) is equal to
(1) sin2(0 + ¢) (2) cos 2(0 + ¢) (3) sin2(0 — ¢) (4) cos2(0 — ¢)
sin(A—B) sin(B—-C) sin(C—A) .
i cos Acos B + cos B cosC + cosC cos A s
(1)sin A +sin B + sin C' 2)1 3)0 (4) cos A+ cos B + cos C
12. If cos pf + cos qf) = 0 and if p # ¢, then 6 is equal to (n is any integer)
m(3n+1 m(2n +1 m(n+£1 m(n+ 2
(1) "B+ o "+l 3 D @ ™ t2)
P—q pEyq pEyq p+yq
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sin(a + /)

If tan o and tan 3 are the roots of 2 +ar+b= 0, then — - is equal to
sin o sin 3
b a a b
(1 = 2)+ 3)—= 4 ——
a b b a
In a triangle ABC, sin? A + sin? B + sin? C' = 2, then the triangle is
(1) equilateral triangle (2) isosceles triangle (3) right triangle (4) scalene triangle.
If f(0) = |sinf| + |cos@|,0 € R, then f(0) is in the interval
(1)[0,2 @ [1.v2] 3)[12) (0,1

cos 6x + 6 cos4dx + 15cos2x + 10 .
is equal to

cosdx + dcos3x + 10cosx
(1) cos2x (2) cosx (3) cos 3z (4) 2cosx

The triangle of maximum area with constant perimeter 12m
(1) is an equilateral triangle with side 4m (2) is an isosceles triangle with sides 2m, 5m, 5m
(3) is a triangle with sides 3m, 4m, 5m (4) Does not exist.

A wheel is spinning at 2 radians/second. How many seconds will it take to make 10 complete
rotations?

(1) 107 seconds (2) 207 seconds (3) 5w seconds (4) 157 seconds
If sin & 4 cos a = b, then sin 2« is equal to
(OB —1,ifb<vV2 @V —1,ifb>vV2 @) —1,ifb>1 @b —1,ifb>+2
Ina AABC, if
(i) si in 2 g >0
sin 5 sin 5 sin 5
(ii) sin Asin Bsin C' > 0 then

(1) Both (i) and (ii) are true  (2) Only (i) is true
(3) Only (ii) is true (4) Neither (i) nor (ii) is true.

4 )

Summary

Sum and Difference Identities(Ptolemy Identities):
cos(a £ 8) = cos acos f F sin asin f; sin(« &+ ) = sinacos § %+ cos avsin

tan o + tan 3 tan o — tan 8
; tan(a — ) =
1 —tanatan g 1+ tanatan

tan(a + §) =

151 Summary



www.thtextbooks.in

Trigonometry




www.thtextbooks.in

ICT CORNER-3(a)

Expected Outcome=-

Step-1

Open the Browser and type the URL Link given below (or) Scan the QR Code..

Step-2

GeoGebra Work book called “XI Std Trigonometry” will appear. In this several work
sheets of different Trigonometry concepts are seen. Select one you want. For example,

open “Sine and Cosine - Addition Formula”

Step-3

Move the Sliders to change « and (3 values. Angles in the Diagram changes and the
Addition formula values change correspondingly.

Step-1

| Step-2

4 gy

Step-3

Sine and Cosine- Addition Formula.

Sinfa+f) = Sin(70+20) = Sin%0 = 1

Cos{o+f) = Cos(T0+20) =Cos90 = 0

Sina-p)-= Cos(70-20)= Cos(50).= 0.766

Cos{a-f) = Cos(70-20) = Cos(50) = 0.6428

Observe for each value and calculate by formulae and check the results. Similarly Open and check

other work sheets for Ratios and Unit circle etc..
*Pictures are only indicatives.

Browse in the link XI Std Trigonometry GeoGebra Work

book: https://ggbm.at/kSvP7pv2
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ICT CORNER 3(b)

Expected Outcome=-

Move the vertices to change the valuss
sn{A) _ sin(TB.ATE") _
a 11.639
The Law of Sines Jeetl:1] - sin(27.767") oy

0.084

b 5.534 o
un(C) _ un{TRTSS) _
G T T .
a b €
= = = 11878 = 2R
sin{A) — sin(B)  sin(C)

Whare R is the radims of the circumscribing circle
A b=55M

Step-1
Open the Browser andtype the URL Link given below (or) Scan the QR Code.

Step-2

Geo?}ebra Work sheet called “The Sine Law” will appear. In the worksheet a Triangle
is seen with vertices A,B and C with sides a, b and c. Move the vertices to change the
Triangle size.

For any triangle Sine Law is maintained and the working is shown on right-hand side-
Observe.

o Step-1 |

C | D P

o9
1 https//ggbm.at/BVEmmgZn
Q, https://ggbm.at/BVEmmaZn - gmail.com Sear

[ The Sine Law

Move the vertices to change the values

sin(A) _ sin(63.159°) _
A F - i T

WA R sin(B) _ sin(56.943°) 0.125
X 6.729 il

b

b=6729 sin(C) _ sin(59.898")

c e
a b €
sin{A)  sin(B) sin(C) s S
B c Where R is the radius of the circumscribing circle.

*Pictures are only indicatives.

Browse in the link The Sine Law- GeoGebra Work sheet:
https://ggbm.at/BVEmmqZn
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Combinatorics and
Mathematical Induction

“No great discovery was ever made without a bold guess”

- Newton

4.1 Introduction

Combinatorics is the branch of mathematics which is related to counting. It deals with arrangements
of objects as well as enumeration, that is, counting of objects with specific properties. The roots of the
subject can be traced as far back as 2800 BC(BCE) when it was used to study magic squares and
patterns within them.

English physicist and mathematician Sir Isaac Newton, most famous for his law of gravitation,
was instrumental in the scientific revolution of the 17th century. Newton’s belief in the “Persistance
of patterns” led to his first significant mathematical discovery, the generalization of the expansion of
binomial expressions.

Newton discovered Binomial Theorem which he claimed the easiest
way to solve the quadratures of curves. This discovery is essential
in understanding probability. The generalized version of the Binomial
Theorem, the Multinomial Theorem, applies to multiple variables. It is
widely used in Combinatorics and Statistics.

He was the first to use fractional indices and to employ coor-
dinate geometry to derive solutions to Diophantine equations. He
approximated partial sums of the harmonic series by logarithms (a
precursor to Euler’s summation formula) and was the first to use
power series with confidence and to revert power series. Newton’s
work on infinite series was inspired by Simon Stevin’s decimals. Newton (1643—1727)

In 1705, he was knighted by Queen Anne of England, making him Sir Isaac Newton. Newton made
discoveries in optics and theory of motions. Along with mathematician Leibnitz, Newton is credited
for developing essential theories of calculus.

Combinatorics has many real life applications where counting of objects are involved. For
example, we may be interested to know if there are enough mobile numbers to meet the demand
or the number of allowable passwords in a computer system. It also deals with counting techniques
and with optimisation methods, that is, methods related to finding the best possible solution among
several possibilities in a real problem. In this chapter we shall study counting problems in terms of
ordered or unordered arrangements of objects. These arrangements are referred to as permutations and
combinations. Combinatorics are largely used in the counting problems of Network communications,
Cryptography, Network Security and Probability theory. We shall explore their properties and apply
them to counting problems.

Consider another situation: We all know that our electricity consumer card number is of the form
A: B : C, where A denotes the electrical substation /larger capacity transformer number, B denotes the
smaller capacity electricity transformer number and C denotes the consumer number. There may be
conditions that to each substation certain maximal number of transformer can only be linked and with
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a particular transformer certain maximal number of consumer connection can only be linked. Now
the question of deciding, whether a new Transformer/Substation needs to be erected, can be made by
the count of the number of consumer connections linked with a substation transformer. How to get
that count? This count can be easily arrived by the use of counting principles.

In this Chapter, the art of counting is discussed starting with the Fundamental principles of
counting, travelling through Permutation and Combinations.

(Learning Objectives )

On completion of this chapter, the students are expected to know

the principles of counting and applying it to various situations.

how to compute the number of ways in arranging a set of distinct objects.

how to compute the number of arrangements from a set containing identical objects.

how to compute and applying the strategies to find the number of combinations of a set of
different objects.

o the applications of the principle of mathematical induction.

\We shall start the chapter with the section on Y,

4.2 Fundamental principles of counting

(1. The Sum Rule Let us consider two tasks which need to be completed. If the first task can be
completed in M different ways and the second in N different ways, and if these cannot be
performed simultaneously, then there are M/ + N ways of doing either task. This is the sum
\_ rule of counting.

Example 4.1 Suppose one girl or one boy has to be selected for a competition from a class
comprising 17 boys and 29 girls. In how many different ways can this selection be made?

Solution:
The first task of selecting a girl can be done in 29 ways. The second task of selecting a boy can
be done in 17 ways. It follows from the sum rule, that there are 17429 = 46 ways of making this
selection.

ElQ The sum rule may be extended to more than two tasks. Thus if there are n non-simultaneous
tasks 11,15, 15, - - -, T,, which can be performed in mq, ms, - - - , m,, ways respectively, then
the number of ways of doing one of these tasks is mq + mo + - - - + m,,.

(2. The Product Rule Let us suppose that a task comprises of two procedures. If the first
procedure can be completed in M different ways and the second procedure can be done in N
different ways after the first procedure is done, then the total number of ways of completing
\_ the task is M x N

Example 4.2 Consider the 3 cities Chennai, Trichy and Tirunelveli. In order to reach Tirunelveli
from Chennai, one has to pass through Trichy. There are 2 roads connecting Chennai with Trichy
and there are 3 roads connecting Trichy with Tirunelveli. What are the total number of ways of
travelling from Chennai to Tirunelveli?
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Solution:

There are 2 roads connecting Chennai to Trichy. Suppose these are R; and R,. Further there are
3 roads connecting Trichy to Tirunelveli . Let us name them as Sp, S2 and Ss. Suppose a person
chooses R; to travel from Chennai to Trichy and may further choose any of the 3 roads Sy, S5 or S3
to travel from Trichy to Tirunelveli. Thus the possible road choices are (Ry, S1), (R1, S2), (R1, S3).
Similarly, if the person chooses R, to travel from Chennai to Trichy, the choices would be
(Rs, S1), (R2,S2), (Ra, S3).

R S,
RZ S3
Figure 4.1

Thus there are 2 x 3 = 6 ways of travelling from Chennai to Tirunelveli.

Q An extension of the product rule may be stated as follows:

If a task comprises of n procedures P, P, Ps,--- , P, which can be performed in
mi,ma,--- ,m, ways respectively, and procedure F; can be done after procedures
P, Py Ps --- P,y are done, then the number of ways of completing the task is

m1 X Mo X =+ X My,.

(3. The Inclusion-Exclusion Principle Suppose two tasks A and B can be performed simulta)
neously. Let n(A) and n(B) represent the number of ways of performing the tasks A and B
independent of each other. Also let n(A N B) be the number of ways of performing the two
tasks simultaneously. We cannot use the sum rule to count the number of ways of performing
one of the tasks as that would lead to over counting. To obtain the correct number of ways
we add the number of ways of performing each of the two tasks and then subtract the number
of ways of doing both tasks simultaneously. This method is referred to as the principle of
inclusion - exclusion. Using the notation of set theory we write it as

\_ n(AUB) =n(A) +n(B) —n(AN B). )

Suppose we have to find the number of positive integers divisible by 2 or 7 (but not both), upto 1000.
Let n(A) denote the number of integers divisible by 2, n(B) denote the number of integers divisible
by 7 and n(A N B) the number of integers divisible by both 2 and 7. Then the number of positive
integers divisible by 2 or 7 is given by

n(AUB) =n(A)+n(B) —n(ANB) =500 + 142 — 71 = 571.

(Note that n(A) will include all multiples of 2 upto 1000, n(B) will include all multiples of 7 upto
1000 and so on.)

Tree Diagrams: Tree diagrams are often helpful in representing the possibilities in a counting
problem. Typically in a tree the branches represent the various possibilities. For example, suppose
a person wants to buy a Car for the family. There are two different branded cars and five colours are
available for each brand. Each colour will have three different variant on it namely GL,SS,SL. Then
the various choices for choosing a car can be represented through a tree diagram as follows:
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My New Car
N

o ™~

GL SS SLGL SS SLGL SS SLGL SS SLGL SS SL GL SS SLGL SS SLGL SS SLGL SS SLGL SS SL

Figure 4.2

We shall now illustrate the different rules described above through examples

Example 4.3 A School library has 75 books on Mathematics, 35 books on Physics. A student can
choose only one book. In how many ways a student can choose a book on Mathematics or Physics?

Solution:

(i) A student can choose a Mathematics book in “75” different ways.
(i1) A student can choose a Physics book in “35” different ways.
Hence applying the Rule of Sum, the number of ways a student can choose a book is
75 4+ 35 = 110.

Now we shall discuss the problem stated in our introduction.

Example 4.4 If an electricity consumer has the consumer number say 238:110: 29, then describe
the linking and count the number of house connections upto the 29th consumer connection linked
to the larger capacity transformer number 238 subject to the condition that each smaller capacity
transformer can have a maximal consumer link of say 100.

Solution:
The following figure illustrates the electricity distribution network.

Transmission System  Monitoring & Control ~ Disribution System

Substation

Figure 4.3

There are 110 smaller capacity transformers attached to a larger capacity transformer. As
each smaller capacity transformer can be linked with only 100 consumers, we have for the 109
transformers, there will be 109 x 100 = 10900 links. For the 110" transformer there are only
29 consumers linked. Hence, the total number of consumers linked to the 238" larger capacity
transformer is 10900 + 29 = 10929.
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Example 4.5 A person wants to buy a car. There are two brands of car available in the market and
each brand has 3 variant models and each model comes in five different colours as in Figure 4.2 In
how many ways she can choose a car to buy?

Solution:

A car can be bought by choosing a brand, then a variant model, and then a colour. A brand can be
chosen in 2 ways; a model can be chosen in 3 ways and a colour can be chosen in 5 ways. By the
rule of product the person can buy a car in 2 X 3 x 5 = 30 different ways.

Example 4.6 A Woman wants to select one silk saree and one sungudi saree from a textile shop
located at Kancheepuram. In that shop, there are 20 different varieties of silk sarees and 8 different
varieties of sungudi sarees. In how many ways she can select her sarees?

Solution:

The work is done when she selects one silk saree and one sungudi saree. The Woman can select a
silk saree in 20 ways and sungudi saree in 8 ways. By the rule of product, the total number of ways
of selecting these 2 sarees is 20 x 8 = 160.

Example 4.7 In a village, out of the total number of people, 80 percentage of the people own
Coconut groves and 65 percent of the people own Paddy fields. What is the minimum percentage of
people own both?

Solution:

Let n(C) denote the percentage of people who own the Coconut groves and n(P) denote the
percentage of people who own Paddy fields. We are given n(C') = 80 and n(P) = 65. By the
rule of inclusion - exclusion n(C' N P) = n(C) + n(P) — n(C' U P) . The maximum value of
n(C' U P) is 100. Therefore, the minimum value of n(C' N P) is 80 4+ 65 — 100 = 45. That is, the
minimum percentage of the people who own both is 45.

EI) In the next problem, we use the notion of a ’string’. A string is formed by writing given
letters one by one in a sequence. For instance, strings of length three formed out of the
letters a,b,c & d are aaa, abb, bda, dca, cdd - - -.

Example 4.8

(i) Find the number of strings of length 4, which can be formed using the letters of the word
BIRD, without repetition of the letters.

(i1) How many strings of length 5 can be formed out of the letters of the word PRIME taking all
the letters at a time without repetition.

Solution:

(i) There are as many strings as filling the 4 vacant places by the 4 letters, keeping in mind that
repetition is not allowed. The first place can be filled in 4 different ways by any one of the
letters B,I,LR,D. Following which, the second place can be filled in by any one of the remaining
3 letters in 3 different ways, following which the third place can be filled in 2 different ways,
following which fourth place can be filled in 1 way.
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Thus the number of ways in which the 4 places can be filled, by the rule of product is
4 x 3 x 2 x 1 = 24. Hence, the required number of strings is 24.

(i1) There are 5 different letters with which 5 places are to be filled. The first place can be filled
in 5 ways as any one of the five letters P,R,I,M,E can be placed there. Having filled the first
place with any of the 5 letters, 4 letters are left to be placed in the second place, three letters
are left for the third place and 2 letters are left to be put in the fourth place. The remaining 1
letter has to be placed in the fifth place.

Hence, the total number of ways filling up five placesis 5 x 4 x 3 x 2 x 1 = 120.

I__\\\j Observe the similarity between the above two cases.

Example 4.9 How many strings of length 6 can be formed using letters of the word FLOWER if

(1) either starts with F or ends with R?
(i) neither starts with F nor ends with R?

Solution:
In any such string, each of the letters FL,O,W,E,R is used exactly once.

(i) If such a string starts with F, then the other five positions are to be filled with the letters
L,O, W, E,R.

As there cannot be any repetition of let-

ters in the formation of the strings we can fill

up the 2nd, 3rd, 4th, 5th and 6th places in 5, |1 ‘fa |5 — |4wa |3 — |2 — |1 _ |
4,3,2 and 1 ways. y > way dway Sway 2way 1way
Hence, by the rule of product, the number Figure 4.4

of strings of length 6 starting with F is equal

t0d x4 x3x2x1=120. | | | | |
If such a string ends with R, then the

other five positions are to be filled with the

| R |
5way 4way 3 way 2way 1way 1way

letters E.L,O,W,E. Figure 4.5
As in the previous case, we conclude that
the number of strings of length ending with [F | [ [ [ [ R |
R is 120. 1 way 4way 3 way 2way 1way 1way
If a string starts with F and also ends with
R, then the other 4 positions are to be filled Figure 4.6

with letters L, O, W, E.
As in the previous cases, the number of strings of length of 6 starting with F and ending

withRis4 x 3 x 2 x 1 = 24.
By the principle of inclusion - exclusion, the number of strings of length 6, either starting
with F or ending with R is 120 + 120 — 24 = 216.

(i1) A string that neither starts with F nor ends with R is one which has not been counted in
(i). Together, they account for all possible strings of length 6 formed out of the letters,
FEL,O,W,E,R, where no letter is repeated.

Now, the number of all such strings is formed by filling the first position by any of the
6 letters, the second by any of the remaining 5 letters and so on. That is, there are in total
6 x5 x4x3x2x1= 720 such strings. The number of words neither starting with F nor
ending with R is the same as the difference between total number of letter strings and the
number of strings either starting with F or end with R which is 720 — 216 = 504.
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Example 4.10 How many licence plates may be made using either two distinct letters followed by
four digits or two digits followed by 4 distinct letters where all digits or letters are distinct?

Solution:
Here we have two cases:

Case 1: The number of licence plates having two letters followed by four digits is
26 x 25 x 10 x 9 x 8 x 7 = 32,76, 000.

Case 2: The number of licence plates having two digits followed by four letters is
10 X 9 x 26 x 25 x 24 x 23 = 3, 22,92, 000.
Since either case 1 or case 2 is possible, the total number of licence plates is
(26 x 25 x 10 x 9 x 8 x 7) 4 (10 x 9 x 26 x 25 x 24 x 23) = 3, 55,68, 000.

Example 4.11 Count the number of positive integers greater than 7000 and less than 8000 which
are divisible by 5, provided that no digits are repeated.

Solution:

It should be a 4-digit number greater than 7000 and | 7 | | |0 o 5|
less than 8000. Then the 1000 place will be the digit 1 way 8way 7 way 2 way
7. Further, as the number must be divisible by 5 the

unit place should be either O or 5. Figure 4.7

As repetition is not permitted, the 100" place can be filled in 8 ways using remaining numbers
and 10" place can be filled in 7 ways.
Hence, the required number of numbersis 1 X 8 X 7 x 2 = 112.

Example 4.12 How many 4 - digit even numbers can be formed using the digits 0, 1, 2, 3 and 4, if
repetition of digits are not permitted?

Solution:
There are two conditions as follows:

1. It is 4-digit number and hence its 1000*" place cannot be 0.
2. It is an even number and hence its unit place can be either 0, 2 or 4.

Two cases arise in this situation. Either 0 in the unit place or not.

Case 1. When the unit place is filled by 0, then the 1000™" place | | | [ 0 ]
can be ﬁlledt}ln 4 ways, 100" place can be filled in 3 3 way 3 way 2way 1way
ways and 10*" place in 2 ways. Therefore, number of
4-digit numbers having 0 at unit place is Figure 4.8
4x3x2x1=24.

Case 2. When the unit place is filled with non-zero numbers, | 0 | | | 2/4 |
that is 2 or 4, the number of ways is 2, the number of 3 way 3 way 2way 2 way
ways of filling the 1000*" place is in 3 ways (excluding
’0%), 100" place in 3 ways and 10" place in 2 ways. Figure 4.9
Therefore, number of 4-digit numbers without 0 at unit
placeis 3 X 3 x 2 x 2 = 36.

Hence, by the rule of sum, the required number of 4 digit even numbers is 24+36 = 60.
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Example 4.13 Find the total number of outcomes when 5 coins are tossed once.

Solution:
When a coin is tossed, the outcomes are in two ways which are { Head, Tail }.

By the rule of product rule, the number of outcomes when 5 coins are tossed is
2X2X2x2x2=20=232

& More generally, if n coins are tossed then the number of outcomes is 2".

Example 4.14 In how many ways (i) 5 different balls be distributed among 3 boxes? (ii) 3 different
balls be distributed among 5 boxes?

Solution:

(i) Each ball can be placed into any one of the three boxes in 3 different ways. Therefore, by
rule of product, the number of ways of distributing 5 different balls among three boxes is
3x3x3x3x3=3"=243.

(i) Each ball can be placed into any one of the five boxes in 5 different ways. Therefore, by
rule of product, the number of ways of distributing 3 different balls among five boxes is
B BxE =5 =175,

DQ In order to avoid confusions, take the objects(balls) and distribute them in places(boxes).
More generally, if n different objects are to be placed in m places, then the number of ways
of placing is m™.

Example 4.15 There are 10 bulbs in a room. Each one of them can be operated independently. Find
the number of ways in which the room can be illuminated.

Solution:

Each of the 10 bulbs are operated independently means that each bulb can be operated in two ways.
That is in off mode or on mode. The total number of doing this are 2'° which includes the case in
which 10 bulbs are off. Keeping all 10 bulbs in “off”” mode, the room cannot be illuminated. Hence,
the total number of ways are 2! — 1 = 1024 — 1 = 1023.

Another concept which is an essential tool in a counting process which is stated as follows:

The Pigeonhole Principle:

Suppose a flock of pigeons fly into a set of pigeonholes. If there are more pigeons than
pigeonholes then there must be at least one pigeonhole with at least two pigeons in it. A
generalised form of this may be applied to other objects and situations as well.

If £ + 1 or more objects are placed in k boxes, then there is at least one box containing two or
more of the objects.

Here are some examples.

1. In any group of 27 English words, there must be at least two words which begin with the
same letter (since there are only 26 letters in the English alphabet).

2. If six meetings are held on weekdays only, then there must be at least two meetings held on
the same day.
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In order to understand the Permutation and Combinations we need a concept called “Factorials” which
will be discussed in the next section.

4.3 Factorials

Factorial of a natural number 7 is the product of the first n natural numbers. It is denoted by n!.
That is,
nl=1x2x3x---xn.

We read this symbol as “n factorial” or “factorial of n”. The notation n! was introduced by the French
mathematician Christian Kramp in the year 1808. Note that for a positive integer n

nl=nxn-1)xn—-2)x---x3x2x1
= n(n—1) for n>1
=nn—1)(n—2)! for n>2
=n(n—1)(n—2)(n—3)! for n>3 andsoon.

Observe that,

=1

20 = 2x1=2

3l =3x2x1=6

4 = 4x3x2x1=24

Bl =5 x4x3x2x1=120

22 = 22 x21 x20x --- x3 x2x1 =1124000727777607680000

The number 22 ( the Birth date of Ramanujan) has a special place with respect to factorial that, it is
the least integer N greater than 1 whose factorial has exactly N digits.

It will be a good exercise for both students and teachers to find the next number N such that N
has exactly N digits.

Note that 0! = 1 is evident by substituting n = 0 in the equation (n + 1)! = (n + 1) x n! as
H=0+1)x0 = 0= IT' = 1. This way, we talk of factorial for non-negative integers. Note
that factorials can be extended to certain negative numbers and also to complex numbers, which are
beyond the scope of this book.

We shall now discuss certain examples in order to familiarise the computation of factorials.

Example 4.16 Find the value of

. .. 8!
(1) 5! (i) 6! — 5! (i) Tl

Solution:

() 5! =5x4x3x2x1=120.

(ii)) 6! =5 =6 x 5! = 5! = (6 — 1) x 5! =5 x 120 = 600.
(iii) 8! _8><7><6><5!_8><7><6
5 x 21 5! x 2! n 2

= 168.
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7!
Example 4.17 Simplify a1
Solution:

7!_7><6><5><4><3><2!

o= 5 =T7Tx6x5Hx4x3=2520.

Example 4.18 Evaluate ' when (i) n =7,r =5 (i) n = 50,r = 47 (iii) For any n

rl(n —r)
with r = 3.
Solution:

(i) Whenn =7,r=5

n! 7! Tx6x5l  Tx6
rl(n—7r)!  BI(7—5)! 5! x 2! 1x2
(i) When n = 50,r = 47
n! B 50! _5()><49><48><47!_50><49><48_19600
rlin —r)!  471(50 — 47)! 47! x 3! - 1x2x3 ‘
(iii)) Forany n andr = 3
n! B n! nax(n—-1)xn-2)(n-3) nn-1)(n-2)
rin—7)  3l(n—3)! 1x2x3x(n—3) - 6 '

Example 4.19 Let N denote the number of days. If the value of ! is equal to the total number of
hours in /V days then find the value of N?

Solution:
We need to solve the equation N! = 24 x N.
For N =1,2,3,4, N!<24x N.
For N =5, we have N! = 5! =4! x 5 = 24N.
For N > 5, we have N! > 5N > 24 x N. Hence N = 5.

6!
Example 4.20 If — = 6, then find the value of n.
n!

Solution:

6! 1.2.3.4.5.6.

— = = . A , = 0.
] 123 7 6. Asn < 6 we get,n =5

Example 4.21 If n! + (n — 1)! = 30, then find the value of n.

Solution:
Now, 30 =6x5.Asn!l+(n—1)! = (n+1)(n—1)!, equating (n — 1)! = 6 = 3!, we get n = 4.
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Example 4.22 What is the unit digit of the sum 2! + 3! + 4! + ... + 2217

Solution:
From 5! onwards for all n! the unit digit is zero and hence the contribution to the unit digit is through

2! + 3! + 4! only. which is 2 + 6 + 24 = 32 . Therefore the required unit digit is 2.

1 1 A
Example 4.23 If ate = then find the value of A.
Solution:
1 1
We have,

Ox8x7 7 8xT

1 A 1 1 A 9
Therefore, 7 X 9x8 7l X [1 + g} equivalently, Y which imply A = 81.

(2n)!

n!

Example 4.24 Prove that =2"(1.3.5---(2n — 1)).

Solution:

(2n)!  1.234---(2n—2).(2n—1)2n

n! n!

(1.35.---(2n — 1)) (24.6.- - - (2n — 2).2n)

= ‘ (Grouping the odd and even numbers separately)
n:

1.35.---(2n -1 2" x (1.2.3.---(n —1).
= ( (2n = 1)) x 'X ( (n=1):n) (taking out the 2’ s)
n!

(1.3.5.---(2n — 1)) x 2" x n!
n!

= 2"(1.35.---(2n—1)).

Exercise - 4.1

(1) A person went to a restaurant for dinner. In the menu card, the person saw 10 Indian and 7
Chinese food items. In how many ways the person can select either an Indian or a Chinese
food?

(i) There are 3 types of toy car and 2 types of toy train available in a shop. Find the number of
ways a baby can buy a toy car and a toy train?

(iii) How many two-digit numbers can be formed using 1,2,3,4,5 without repetition of digits?
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(iv) Three persons enter in to a conference hall in which there are 10 seats. In how many ways
they can take their seats?
(v) In how many ways 5 persons can be seated in a row?

(i) A mobile phone has a passcode of 6 distinct digits. What is the maximum number of attempts
one makes to retrieve the passcode?

(i) Given four flags of different colours, how many different signals can be generated if each
signal requires the use of three flags, one below the other?

. Four children are running a race.

(i) In how many ways can the first two places be filled?

(i1) In how many different ways could they finish the race?

. Count the number of three-digit numbers which can be formed from the digits 2,4,6,8 if

(1) repetitions of digits is allowed. (i1) repetitions of digits is not allowed

. How many three-digit numbers are there with 3 in the unit place? (i) with repetition (ii) without

repetition.

. How many numbers are there between 100 and 500 with the digits 0, 1, 2, 3, 4, 5 ? if (i) repetition

of digits allowed (ii) the repetition of digits is not allowed.

. How many three-digit odd numbers can be formed by using the digits 0, 1, 2, 3, 4, 5 ? if (i) the

repetition of digits is not allowed (ii) the repetition of digits is allowed.

. Count the numbers between 999 and 10000 subject to the condition that there are (i) no restriction.

(i1) no digit is repeated. (iii) at least one of the digits is repeated.

. How many three-digit numbers, which are divisible by 5, can be formed using the digits 0, 1, 2, 3,

4, 5 if (i) repetition of digits are not allowed? (ii) repetition of digits are allowed?

To travel from a place A to place B, there are two different bus routes B, Bs, two different train
routes 77, T, and one air route A;. From place B to place C there is one bus route say B;, two
different train routes say 7,7, and one air route A. Find the number of routes of commuting
from place A to place C via place B without using similar mode of transportation.

How many numbers are there between 1 and 1000 (both inclusive) which are divisible neither by
2 nor by 5?
How many strings can be formed using the letters of the word LOTUS if the word
(i) either starts with L or ends with S?  (ii) neither starts with L nor ends with S?
(i) Count the total number of ways of answering 6 objective type questions, each question
having 4 choices.
(i1) In how many ways 10 pigeons can be placed in 3 different pigeon holes ?
(iii) Find the number of ways of distributing 12 distinct prizes to 10 students?
Find the value of

12! 3)!
() 6! (i) 41450 (i) 31—21 () Bl x 4l () 5 (V) EZL;
n!
Evaluate ———— when
rl(n—r)!

i) n=6,r=2 () n=10,r =3 (iii) For any n with r = 2.

Find the value of n if
1 n

. o1
i) (n+1)I=20(n—1)! (i) gl + 9= 100

Combinatorics and Mathematical Induction 166



www.thtextbooks.in

Factorials can be generalised as double factorial as follows:

Double Factorial of n:

Factorial of an integer n, denoted by n! can be viewed as a function f : NU {0} — N, where N
1s the set of all Natural numbers, defined as

f(n) 1 for n =0,
n)=
nx(n—1)x (n—2)x..x3x2x1 for n#0.

One can define n!! ( double factorial of n ) as

1 for n =0,
gn)=<nx(n—2)x (n—4)x...x4x2  for niseven
nx(n—2)x (n—4)x...x3x1  for nisodd

Accordingly, 5!! =5 x3x 1 =15and 8!! =8 x 6 x 4 x 2 = 384.
Note that n!! # (n!)! as 4!! = 8 where as (4!)! = (24)!

4.4 Permutations

What is a permutation ?

Permuations come in various disguises.

Suppose three friends A, B and C have to stand in line for a
photograph. In how many order can they stand? Some of the possible
arrangements (from left to right) are

A B,C:AC,B:B,A,C
B,C,A:C,B, A: C, A, B.

Thus there are six possible ways in which they can arrange themselves
for the photograph.

Thus if 3 objects have to be arranged in a row there are 3 x 2 x 1 = 3! possible permutations. The
number of permutations of 4 objects taken all at a time is 4 x 3 x 2 x 1 = 4! Thus if n objects have to
be arranged in a line there are n x (n — 1) X (n —2) x -+ x 3 X 2 X 1 = n! possible arrangements
or permutations.

Suppose you have 7 letters A,B,C,D,E,F and G. We want to make a 4 letter string. We have
7 choices for the Ist letter. Having chosen the first letter, we have 6 choices for the second letter.
Proceeding this way, we have 4 choices for the 4th letter.

Hence, the number of permutations of 4 letters chosen from 7 letters is

7><6><5><4><3><2><1_7!_ 7!

7 4= _ T |
0o 3x2x 1 31 (7 —4)!

More generally, the number of distinct permutations of 7 objects which can be made from n distinct
!

(n—r)!

objects is . Itis denoted by " P,. The formal proof of this result will be proved in this section.
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4.4.1 Permutations of distinct objects

In terms of function on any finite set say S = {x1,xs,...z,}, a permutation can be defined as a
bijective mapping on the set S onto itself. The number of permutation on the set S is the same as the
total number of bijective mappings on the set .S.

We denote the number of permutations by " F,..

Theorem 4.1: If n, r are positive integers and » < n, then the number of permutations of n distinct
objects taken r atatimeisn (n — 1) (n —2)---(n —r + 1).

Proof. A permutation is an ordering. A permutation of n distinct objects taken  at a time is formed
by filling of 7 positions, in a row with objects chosen from the given n distinct objects.

n way (n-1) way (n-2) way (n-r+1) way
N— - -
I positions

There are n objects that can be filled in the first position. For the second position there are
remaining n — 1 objects. There are n — 2 objects for the third position. Continuing like this until
finally we place one of the (n — (r — 1)) possible objects in the r** position. By the rule of product
we conclude "P, =n(n—1)(n—2)---(n—7r+1).

[ |
|
Theorem4.2: If n > 1,and 0 <7r < n, then"PT:( i ik
n—r)l
Proof. By Theorem 4.1, we have,
"P,=nxn—-1)xn—-2)x---x(n—r+1)
naxm-)xn=2)x--xn—r+l)xn—-—r)xn-r—1)---2x1
B m—r)xn—-r—1)x---x2x1
n!
(=)t |

[@ To be specific, if n is a positive integer, and r is any non-negative integer, we can represent,

n!
"P.=<¢ (n—r)!
0 for r > n.

for r <n,

"Py=1 for r = 0.

Q) "p {"Pn:n! for r =n,

P@ The n different objects arranged in a row is " P, = n! ways.

Theorem 4.3: The number of permutations of n different objects taken r at a time where repetition
is allowed, is n".
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Proof. As in Theorem 4.1.

n way n way n way n way
N— -
—

r positions

We can fill the first position with n objects. For the second position (still we can use the object
used in first position), there are n objects, and so on the 7" position can be filled with n objects.By the
rule of product, The number of permutations of n different objects taken r at a time when repetition

allowedisn x n X n X ---n(rtimes) =n".

4.4.2 Properties of Permutations
1.

Proof. We have,

Proof. We have,
(n—1)! ~nl

(Yl s s

nx "P_|=nx

Continuing this process, we arrive at
"Po=n x"'P_ i =nx(n-1)x"?P._,
=nx(n—1)xn—=2)x"3P_3x--x(n—(r—1)""p
=nxn—-1)xn-=2)x---x(n—r+1).

"Pr=nxn—-1)x(n—-2)x---x(n—r+1).

3. "P.=""1p 4+ x "'P_,
Proof. We have,

"R+ x TPy = +r

(n—1)! (n—r)!
_ (=D (n—7r)+7) (n—=1)n
' (TL—?")' (n—r)l
T (n—r1) ="h
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Example 4.25 Evaluate:
Q) 4P, (i) °P; (i)®P, (iv) ©P.
Solution:
() P, =4x3x2x1=4=24.
(ii) °P; =5 x 4 x 3 = 60.
(iii) 8P, =8 x 7 x 6 x 5 = 1680.
(iv) 5Ps =6 x 5 x4 x 3 x2=6!=720.

Example 4.26 If "*2 P, = 42 x "P,, find n.

Solution:
(n+2)P4 = 42 X nPQ
(n+2)P4
= 42
nP2
(n+2)(n+1)(n)(n—1) i

n(n —1)
= n+2)(n+1) =42=7x6
=n+2=7=n=>5.

Example 4.27 If *°P, =7 P, , find r.

Solution:
10Pr _ 7P7"+2

10! 7!
(10—7)! — (5—r)

10 x 9 x 8 x 7! 7!
(10-7)xO—71)x@B—r)x(T—-7)x6—-7)xB-1)! (5-7)!

(I0—7r)x(9—71)xB8—r)x(T—r)x(6—7) = 10x9Ix8=6x5x4x3x2.

Therefore, 10 — 7 =6 = r = 4.

Example 4.28 How many °‘letter strings’ together can be formed with the letters of the word
“VOWELS” so that

(i) the strings begin with £

(i1) the strings begin with £ and end with W.
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Solution:
The given strings contains 6 letters (V,0,W,E,L,S).

Le { [ [ [ T |

5
ps ways

(i) Since all strings must begin with I, we
have the remaining 5 letters which can be
arranged in ® P5 = 5! ways
Therefore the total number of strings with
E as the starting letter is 5! = 120.

(i1) Since all strings must begin with £, and [E | [ [ [
end with W, we need to fix & and W.
The remaining 4 letters can be arranged in
4P, = 4! ways.

Figure 4.10

[ W]

N

*p, ways

Figure 4.11

Therefore the total number of strings with E as the starting letter and W as the final letter is
4! = 24,

Example 4.29 A number of four different digits is formed with the use of the digits 1,2,3,4 and 5
in all possible ways. Find the following

(i) How many such numbers can be formed?
(i1)) How many of these are even?
(iii) How many of these are exactly divisible by 4?7

Solution:

(i) The solution for this is the same as the

number of permutations taking four digits

out of 5 digits is P, = 5x4x3x2 = 120. — = _
(i) For even number last digits must be 2 or 4 °p, ways

which is filled in 2P, ways and remaining .

3 places filled from remaining 4 digits in Figure 4.12

4P; ways. Therefore the required number

of waysis 2P, x 1Py = 2 x 24 = 48. | | | | 214 |
(iii)) Since the number divisible by 4, then \—’T\/—\/ °P, ways

last two digit must be divisible by 4. p; ways

The Last two digits become 12,24,32,52 .

Figure 4.13

( 4 ways). The remaining first two places
filled from remaining 3 digits in 3, ways.
The required number of numbers which
are divisible by 4is *P; x 3P, = 4 x 6 =
24.

| | | 12/24/32/52 |

N

*p, ways

‘P, ways

Figure 4.14

4.4.3 Objects always together (String method)

The number of permutations of n different objects, taken all at a time, when m specified objects are
always together,
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e Consider a string of m specified objects as a single unit

e Then we have (n — m + 1) objects. Permute this (n — m + 1) objects in (n — m + 1)! ways.
e Then permute the m specified objects between themselves in m! ways.

e Finally, the answer is m! x (n — m + 1)!.

4.4.4 No two things are together (Gap method)

To obtain the number of permutations of n different objects when no two of k given objects occur
together and there are no restrictions on the remaining m = n — k objects, we follow the procedure
as follows:

e First of all, arrange the m objects on which there is no restriction in a row. These m objects can
be permuted in " P,, = m! ways.

e Then count the number of gaps between every two of m objects on which there is no restriction
including the end positions. Number of such gaps will be one more than m that is (m + 1). In this
m + 1 gaps, we can permute the k objects in ™! P, ways.

e Then the required number of ways are m! x ™1 p,.

Example 4.30 How many different strings can be formed together using the letters of the word
“EQUATION” so that

(i) the vowels always come together?
(i1) the vowels never come together?

Solution:

(i) There are 8 letters in the word “EQUATION” which includes 5 vowels (E,U,A,1LO) and 3
consonants (Q,T,N). Considering 5 vowels as one letter, we have 4 letters which can be
arranged in P, = 4! ways. But corresponding each of these arrangements, the vowels
E,U,A,LO can be put in > P5 = 5! ways.

Hence, by the rule of product required number of words is 4! x 5! = 24 x 120 = 2880.

(i1) The total number of strings formed by using all the eight letters of the word “EQUATION™ is

8P, = 81 = 40320.

So, the total number of strings in which vowels are never together is the same as the difference
between the total number of strings and the number of strings in which vowels are together is
40320 — 2880 = 37440.

Example 4.31 There are 15 candidates for an examination. 7 candidates are appearing for
mathematics examination while the remaining 8 are appearing for different subjects. In how many
ways can they be seated in a row so that no two mathematics candidates are together?

Solution:
Let us arrange the 8-non-mathematics candidates in 8P = 8! ways. Each of these arrangements
create 9 gaps. Therefore, the 7 mathematics candidates can be placed in these 9 gaps in ? P; ways.

—01_02_05_04_05_0s_07_0s_
By the rule of product, the required number of arrangements is

9! 8 x 9|
| Ip QI -~ ©
8 x P, =8!'x o1 51 .
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Example 4.32 In how many ways 5 boys and 4 girls can be seated in a row so that no two girls are
together.
Solution:

_Bi_ B, Bs By Bs_
The 5 boys can be seated in the row in ®P; = 5! ways. In each of these arrangements 6 gaps are
created. Since no two girls are to sit together, we may arrange 4 girls in this 6 gaps. This can be
done in % P, ways. Hence, the total number of seating arrangements is

5! x 5P, =120 x 360 = 43200.

Example 4.33 4 boys and 4 girls form a line with the boys and girls alternating. Find the number
of ways of making this line.

Solution:
4 boys can be arranged in a line in *P; = 4! ways. By keeping boys as first in each of these
arrangements, 4 gaps are created. In these 4 gaps, 4 girls can be arranged in 1P, = 4! ways.

Bl_Bz_B3_B4_ or Gl_Gz_G3_G4_

Therefore, keeping boys as first, the total number of arrangements are 4! x 4!. Similarly, keeping
girls as first, by a similar argument, the total number of arrangements are 4! x 4!. Hence, by the rule
of sum, keeping either a boy or a girl first, the total number of arrangements are

(4! x 41) + (4! x 4!) = 2(4!)? = 1152.

Example 4.34 A van has 8 seats. It has two seats in the front with two rows of three seats behind.
The van belongs to a family, consisting of seven members, F, M, Sy, Ss, S5,
Dy, Dy. How many ways can the family sit in the van if

(i) There are no restriction?
(i1) Either F' or M drives the van?
(iii) Dy, D, sits next to a window and F' is driving?

Solution:

(i) As there 8 seats to be occupied out of which one seat is for the one who drives. Since there
are no restrictions any one can drive the van. Hence the number of ways of occupying the
driver seat is " P, = 7 ways . The number of ways of occupying the remaining 7 seats by the
remaining 6 people is 7P = 5040. Hence the total number of ways the family can be seated
in the car is 7 x 5040 = 35280.

(i1) As the driver seat can be occupied by only F or M, there are only two ways it can be occupied.
Hence the total number of ways the family can be seated in the car is 2 x 5040 = 10080.
(iii) As there are only 5 window seats available for D& D5 to occupy the number of ways of
seated near the windows by the two family members is °P, = 20. As the driver seat is
occupied by F, the remaining 4 people can be seated in the available 5 seats in °P; = 120.

Hence the total number of ways the family can be seated in the car is
20 x 1 x 120 = 2400.
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To understand the next problem we now define, The Rank of a word in the dictionary.
It is the place at which the given word comes when writing all the strings formed by the letters of the
given word in the dictionary order or lexicographic order.

Example 4.35 If the letters of the word TABLE are permuted in all possible ways and the words
thus formed are arranged in the dictionary order (alphabetical order), find the ranks of the words
(i) TABLE, (ii) BLEAT

Solution:

The dictionary order of the letters of given word is A, B, E, L, T. In the dictionary order of the words
which begin with A come first. If we fill the first place with A, remaining 4 letters (B, E, L, T) can
be arranged in 4! ways. On proceeding like this we get

(i) The rank of the word TABLE

A— — — — =41 =24 ways
B — — — — = 4! = 24 ways
E — — — — =41 =24 ways
L — — — — =41 = 24 ways

TABEL = 1 way
TABLE = 1 way

The rank of the word TABLE is 4 x 4! +1 + 1 = 98.

(i1) The rank of the word BLEAT

A — — — — =41 = 24 ways
BA — —— = 3! = 6 ways
BE — —— = 3! = 6 ways
BLA — — = 2! = 2 ways

BLEAT = 1 way

The rank of the word BLEAT is 24 +6 + 6 + 2 + 1 = 39.

4.4.5 Permutations of not all distinct objects

Consider permuting the letters of the word JEE. In this case the letters of the word are not different.
There are 2 E’s, which are of same kind. Let us treat, temporarily, the 2 E’s as different, say £; and
E5. The number of permutations of 3 different letters taken all at a time is 3!.

Permutations when FE'|, E5 are different | Permutations when E';, F5 are the same.
JE1 B,
JEyE, JEE
E\JE,,
FyJ By EJE
ErEqJ,
FoFyJ EEJ
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It is because of the two F;, E's permuted internally \"Vill give rise to the same permutations. Since they
are same, the required number of permutations is 5 = 3.
Theorem 4.4: The num'ber of permutations of n objects, where p objects are of the same kind and

rest are all different is —

pl
Generally, the number of permutations of n objects, where p; objects are of one kind, pzlobj ects are
of second kind, - - - py, are of k' kind and the rest of it are of different kind is

pil X pal x o x gl

Example 4.36 Find the number of ways of arranging the letters of the word BANANA.

Solution:

This word has 6 le}ters in which there are 3 A’S, 2 N’s and one B. The number of ways of
. 6!

arrangements is %ol 60.

Example 4.37 Find the number of ways of arranging the letters of the word
RAMANUIJAN so that the relative positions of vowels and consonants are not changed.

Solution:

In the word RAMANUIJAN there are 4 vowels (A,A,U,A)in that 3 A’s, 1 U and 5 consonants
(R,M,N,J,N) in that two N’s and rest are distinct. The 4 vowels (A,A,A,U) can be arranged
themselves in g—: = 4 ways. The 5 consonants (R,M,N,J,N) can be arranged themselves in g—: = 60

ways. Therefore the number of required arrangements are gii X g—: =4 x 60 = 240.

Example 4.38 Three twins pose for a photograph standing in a line. How many arrangements are
there (i). when there are no restrictions. (ii). when each person is standing next to his or her twin?

Solution:

(i) The six persons without any restriction may be arranged in ® P5 = 6! = 720 ways.

(i1) Let us consider three twins as 77, 75, T5. Each twin is considered as a single unit and these
three can be permuted in 3! ways. Again each twin can be permuted between themselves in
2! ways. Hence, the total number of arrangements is 3! x 2! x 2! x 2! = 48 ways.

Example 4.39 How many numbers can be formed using the digits 1,2,3,4,2,1 such that, even digits
occupies even place?

Solution:

There are 6 places in that there are 3 even places we have 2,4,2 as even numbers. The number of
ways of permuting 2,4,2 in the 3 even places in % = 3 ways. The remaining numbers 1,3,1 can
be permuted in the remaining 3 places in ;’—: = 3 ways. Hence, the required number of numbers is

3x3=0.
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Example 4.40 How many paths are there from start to end on a 6 x 4 grid as shown in the picture?

How Many Paths?

A -
| End

Start

Figure 4.15

Solution:
Note that any such path comprises 6 horizontal unit lengths and 4 vertical unit lengths. This each
path consists of 10 unit lengths where 6 are of one kind (horizontal) and 4 are of another kind
(vertical).

10
Thus the total ber of paths is ——— = 210.
us the total number of pa s1s4!><6!

Example 4.41 If the different permutations of all letters of the word BHASKARA are listed as in
a dictionary, how many strings are there in this list before the first word starting with B?

Solution:
The required numbe'r of strings is the total number of strings starting with A and using the letters

AAB.HKR,S is ; = 2520.

Example 4.42 If the letters of the word IITJEE are permuted in all possible ways and the strings
thus formed are arranged in the lexicographic order, find the rank of the word IITJEE

Solution:
The lexicographic order of the letters of given word is E, E, I, I, J, T. In the lexicographic order,
the strings which begin with E colme first. If we fill the first place with E, remaining 5 letters

5!
(E,I,1,J,T) canbe glrranged in o Ways. On proceeding like this we get,

E—————:Q—;:60ways‘
IE — —— = 4! = 24 ways
IIE — —— = 3! = 6 ways
IIJ———:g—i:?)ways
IITE — — = 2! =2 ways

IITJEE =1 way

The rank of the word IITJEE is 60 +24 + 6 + 3 + 2 + 1 = 96.

Example 4.43 Find the sum of all 4-digit numbers that can be formed using the digits 1, 2, 4, 6, 8.

Solution:
The number of 4-digit numbers that can be formed using the given 5 digits is °P; = 120. We first
find the sum of the digits in the unit place of all these 120 numbers. By filling the 1 in unit place,
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the remaining three places can be filled with remaining 4 digits in * P; = 24 ways. This means, the
number of 4-digit numbers having 1 in units place is *P; = 24. Similarly, each of the digits 2, 4, 6,
8 appear 24 times in units place. An addition of all these digits gives the sum of all the unit digits
of all 120 numbers. Therefore,

(*Py x 1)+ (*P3 x 2) + (*P3 x 4) + (*P3 x 6) + (*P3 x 8)

='Pyx(1+2+4+6+38)
— 4P x (sum of the digits)
= “P; x 21.

Similarly, we get the sum of the digits in 10" place as *P; x 21. Since it is in 10" place, its value
is “P; x 21 x 10. Similarly, the values of the sum of the digits in 100" place and 1000"place are
4P3 x 21 x 100 and *P; x 21 x 1000 respectively. Hence the sum of all the 4 digit numbers formed
by using the digits 1, 2, 4, 6, 8 is

(*P3 x 21) + (*Ps x 21 x 10) + (*P3 x 21 x 100) + (*Ps x 21 x 1000)
= *P3(21 x 1111)

= 24 x 21 x 1111
= 559944.

Deduction 4.1: The sum of all r-digit numbers that can be formed using the given n non zero digits
is "™V P,_1) x (sum of the digits) x 111 - - - 1(r times)
Deduction 4.2: If 0 is one digit among the given n digits, then we get that the sum of the r-digits
numbers that can be formed using the given n digits (including 0) is
{(”_1)P(r,1) X (sum of the digits) x 111 --- 1(r times)} —

{2 P,y x (sum of the digits) x 111 --- 1((r-1) times)}.

Permutation as Function

Permutation on any finite set S,, = {z1, x9,x3, -+ ,x,} is a bijective function from S,, — S,.
Therefore the set of all permutations on a finite set with n elements is the same as the total
number of bijective functions on the set. This is precisely n!. Hence the study of permutation is
the same as the study of the bijective mappings on the set. Few representations for a permutation
on S5 are given by

ABC| |[ABC| |ABC

BC A|"|C AB|"|C BA|""

Exercise - 4.2

1. If »=Dp,:» py=1:10, find n.
2. If19P,_; =2 x5 P, find 7.
3. (i) Suppose 8 people enter an event in a swimming meet. In how many ways could the gold,
silver and bronze prizes be awarded?
(i) Three men have 4 coats, 5 waist coats and 6 caps. In how many ways can they wear them?
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Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time?

. A test consists of 10 multiple choice questions. In how many ways can the test be answered if

(i) Each question has four choices?
(ii) The first four questions have three choices and the remaining have five choices?
(ii1) Question number n has n + 1 choices?

A student appears in an objective test which contain 5 multiple choice questions. Each question
has four choices out of which one correct answer.

(i) What is the maximum number of different answers can the students give?
(ii) How will the answer change if each question may have more than one correct answers?

How many strings can be formed from the letters of the word ARTICLE, so that vowels occupy
the even places?

. 8 women and 6 men are standing in a line.

(i) How many arrangements are possible if any individual can stand in any position?
(i) In how many arrangements will all 6 men be standing next to one another?
(ii1)) In how many arrangements will no two men be standing next to one another?

. Find the distinct permutations of the letters of the word MISSISSIPPI?
10.
11.

How many ways can the product a?b*c* be expressed without exponents?

In how many ways 4 mathematics books, 3 physics books, 2 chemistry books and 1 biology book
can be arranged on a shelf so that all books of the same subjects are together.

In how many ways can the letters of the word SUCCESS be arranged so that all Ss are together?
A coin is tossed 8 times,

(i) How many different sequences of heads and tails are possible?
(i1) How many different sequences containing six heads and two tails are possible?

How many strings are there using the letters of the word INTERMEDIATE, if

(i) The vowels and consonants are alternative (ii) All the vowels are together

(iii) Vowels are never together (iv) No two vowels are together.

Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out
in a row to form a 6-digit number.

(i) How many distinct 6-digit numbers are there?
(i1) How many of these 6-digit numbers are even?
(iii)) How many of these 6-digit numbers are divisible by 4?

If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed
are arranged in the dictionary order, then find the ranks of the words (i) GARDEN (ii) DANGER.
Find the number of strings that can be made using all letters of the word THING. If these words
are written as in a dictionary, what will be the 85" string?

If the letters of the word FUNNY are permuted in all possible ways and the strings thus formed
are arranged in the dictionary order, find the rank of the word FUNNY.

Find the sum of all 4-digit numbers that can be formed using digits 1, 2, 3, 4, and 5 repetitions not
allowed?

Find the sum of all 4-digit numbers that can be formed using digits 0, 2, 5, 7, 8 without repetition?

4.5 Combinations

Let us suppose there are four persons A, B, C' and D (actual names may be used here) and we have
to select three of them to be a part of a committee. In how many ways can we make this selection?
For example, A, B, C' is one possible choice. Here the order of selection is immaterial. Thus A, B, C'
is the same as B, A, C or C, A, B as long as the same three persons are selected. Thus the possible
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distinct choices or selections are A, B,C; A, B, D; A, C, D and B, C, D. We may thus conclude that
there are 4 ways of selecting 3 people out of 4. Each choice or selection is referred to as a combination
of 4 different objects taken 3 at a time.

Suppose two persons are to be selected from four persons. The possible choices are: A, B : A, C"
A,D: B,C: B,D: C,D. Thus the number of combinations of 4 different objects taken 2 at a time
is 6. The number of combinations of n different objects taken r at a time is represented by "C'.. From
the above we may conclude that *C; = 4 and *Cy = 6. Now, *C5 is the number of combinations of 4
objects taken 3 at a time. Note that in each combination, the three objects may be arranged in 3! ways.
Thus the total number of permutations of 4 objects taken 3 at a time is *C; x 3!. This is also equal to

4P, Hence 1Py =* C5 x 3.

In general, this leads to an important relationship between permutations and combinations as,

"P.="C, xrl

Normally for any reader there may be a confusion between permutation and combination. The
following table with an example may be helpful in clearing the confusion.

S.No Description Permutation Combination
Number of Number of
1 What is a Arrangement or Listing of | Selections or Grouping of
objects objects
If the ordering of objects If the ordering of objects
2 Where to use matters does not matter
3 Representation np, "C,
Examples
4 Ina The number of batting The number of teams
game of cricket line up of 11 players out consisting of 11 players
of the 15 players out of 15 players
5 Ina The number of ways of The number of ways of
process of prize distributing 3 distinct distributing 3 identical
distribution prizes prizes
6 Ina The number of ways of The number of ways of
committee choosing a President and forming a committee of 2
formation a Vice-President for a persons from 13
committee of 13 members members
7 Ina The number of ways of The number of ways of
process of choosing 3 out of 15 choosing 3 out of 15
choosing objects distinct objects one after distinct objects
another simutaneously

Theorem 4.5: The number of combinations of n distinct objects taken r at a time is given by
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Proof. By the relation between permutations and combinations, we have

"P, !
"C, = - (by a result from permutation).
rl rl(n—r)!
|
4.5.1 Properties of Combinations
Property 1: (i) "Cy = 1, (i) "C,, = 1, (iii) "C, = “o=Dr=2nordl),
Proof.
n!
N)'Cy = ——— = 1.
(0"C = G —oy
n! n!
3)"C,, = = =1.
(i) nl(n —n)!  nl0!
(iii)yC, — n(n —1)(n —2) -'--(n— (r—1)) _ n(n — 1)(n—2)l-~-(n—r+1)'
7! 7!
|
In view of, ! !
n! n!
nCn—r = = =" Cr;
m=—r)(n—(m=r))!  (n—r)lr
we have,
Property 2:

"Cp =" Chy.

Property 3: If "C, =" C, then either x = y or x +y = n.
Proof. By the property 2 we have, "C, =" C,,_,

Therefore, "C, =" C, =" C,,_, givesus x = y or v = n — y equivalently, v = yorz +y =n. l
Property 4: "C, +" C,_; ="t C,.

Proof. Using the expressions for the “combination” we have,

n! n!
=) TS Dl (=)
v e Rl e o g
n! n!
=X =) =Dl rn—r+1)

"Cr+"Croq =

- (r—l)!zl(n—r)! X <%+ﬁ>

B n! X(n—r—l—l—i—r)
C(r=D!'x (n—7)! r(n—r+1)
- n! y (n+1)
Cr=D'x(mn—-7)!" rn—1r+1)
_ (n+1)! bl

rIx (n+1—r)!
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Property 5 .
"C.=— x (n=1) C(r—l)-
r
Proof.
(1) _n (n—1)!
P e = ST R (=) = = 1))
__nr-1Y
Cor(r=Dn—1r)! Cr

181

4.5 Combinations



www.thtextbooks.in

Example 4.46 If "Cy = 495, What is n?.

Solution:
We know that,

Therefore,
nx(n—1)x(n—2)x(n—3)

Ax3x2x1 =49

= nxn—1)xn—-2)x(n—3)=495x4x3x2x1
Factoring 495 = 3 x 3 x 5 x 11, and writing this product as a product of 4 consecutive numbers in

the descending order we get,n x (n — 1) x (n —2) x (n —3) = 12 x 11 x 10 x 9. Equating n with
the maximum number, we obtain n = 12.

Example 4.47 If "P, = 11880 and "C,. = 495, Find n and r.

Solution:
We know that,
nPr |
= 7.
nCr
Therefore, 50
rl=——=24=4!,
495

gives r = 4. Using this r = 4, in "¢y = 495, and applying the result of the Example (4.46) we get,
n=12.

4

Example 4.48 Prove that *'C, + 2(28‘7")03 =2 ¢,
=0

Solution:

4

2404 +Z(28—7’)C3 _ 2404 +28 03 +27 03 +26 03 +25 03 +24 03
r=0

_ 2404 +24 03 +25 CS +26 03 +27 CS +28 03

— B, 4 O 426 0y 42 Oy +28 O
— 0, 420 0y 427 O 428 O

— 20, 42T 0 428

— B0, 4380

— 2,
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Example 4.49 Prove that '°C, + 2 x'° C3 +1° ¢, =12 C,

Solution:

V0 +2x10C3+1°Cy = °Cy + (1°C5 +1° C3) +1° Cy
_ (1002 +10 03) + (1003 +10 04)
— 1o, 1110,
_ 1204

Example 4.50 If "2, :=Y p; — 13 : 24 find n.

Solution:

2, - p = 13 24.

e, 13
(nfl)P4 o ﬁ
(n+2)! (n —5)! 13

8 x7  (n_1) 24
(n+2)(n+ 1)n(n —1)! 13

(n—1) x 7! 24
13 13
(n+2)(n+1)(n) = ﬂx7!:ﬂx7x6x5x4x3x2x1

(n+2)(n+1)(n) = 13x 14 x 15
n+2 = 15—n=13.

Example 4.51 A salad at a certain restaurant consists of 4 of the following fruits: apple, banana,
guava, pomegranate, grapes, papaya and pineapple. Find the total possible number of fruit salads.

Solution:
There are seven fruits and we have to select four fruits for the fruit salad. Hence, the total number
of possible ways of making a fruit salad is "Cy =" C3 = 35.

Example 4.52 A Mathematics club has 15 members. In that 8 are girls. 6 of the members are to be
selected for a competition and half of them should be girls. How many ways of these selections are
possible?

Solution:
There are 8 girls and 7 boys in the mathematics club. The number of ways of selecting 6 members
in that half of them girls (3 girls and 3 others) is *C5 x” C3 = 56 x 35 = 1960.

Example 4.53 In rating 20 brands of cars, a car magazine picks a first, second, third, fourth and
fifth best brand and then 7 more as acceptable. In how many ways can it be done?

Solution:

The picking of 5 brands for a first, second, third, fourth and fifth best brand from 20 brands in 2 p,
ways. From the remaining 15 we need to select 7 acceptable in '°C; ways. By the rule of product it
can be done in ?° Py x'° C; ways.
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Example 4.54 From a class of 25 students, 10 students are to be chosen for an excursion party.
There are 4 students who decide that either all of them will join or none of them will join. In how
many ways can the excursion party be chosen?

Solution:

There are two possibilities (i) All the 4 students will got to the e)'(cursion party then, we need to
21!

6! x 15!
(i1) All the 4 students will not go to the excursion party then, we need to select 10 students out

21!
T < 111" Hence, the total number of ways is

select 6 students out of 21 students. It can be done in ?'Cyy = ways.

of 21 students. It can be done in 2*C}, =
21! 21!
T .
6! x 15! 10! x 11!

21C6 +21 ClO _

Example 4.55 A box of one dozen apple contains a rotten apple. If we are choosing 3 apples
simultaneously, in how many ways, one can get only good apples.

Solution:
The total number of ways of selecting 3 apples from 12 apples is '2C5 = 220.
The total number of ways of getting a rotten apple when selecting 3 apples from 12 apples is
equal to selecting 1 rotten apple and remaining 2 apples can be selected from 11 applesis ''C, = 55.
Therefore, the total number of ways of getting only good apples is

2c, — 1, =220 — 55 = 165

Example 4.56 An exam paper contains 8 questions, 4 in Part A and 4 in Part B. Examiners are
required to answer 5 questions. In how many ways can this be done if

(1) There are no restrictions of choosing a number of questions in either parts.

(ii) At least two questions from Part A must be answered.

Solution:

(i) There are no restrictions. Totally there are 8 questions in both Part A and Part B. The total
number of ways of attempting 5 questions from 8 questions is *Cs = *Cs = 56.

(i) At least two questions from Part A needs to be answered.Accordingly, various choices
are tabulated as follows.

Part A | Part B | Number of selections
2 3 40y x4 Oy
3 2 405 x4 Oy
4 1 “Chn 2% Oh

Therefore, the required number of ways of answering is

A0y x2 O3+ O3 x* Oy +2 Oy x4 €y = 24 4+ 24 + 4 = 52,
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Example 4.57 Out of 7 consonants and 4 vowels, how many strings of 3 consonants and 2 vowels
can be formed?

Solution:
Number of ways of selecting (3 consonants out of 7) and (2 vowels out of 4) is

703 X4 Cg

Each string contains 5 letters. Number of ways of arranging 5 letters among themselves is 5! = 120
Hence required number of ways is,

Cy x* Oy x 51 =35 x 6 x 120 = 25200

Example 4.58 Find the number of strings of 5 letters that can be formed with the letters of the word
PROPOSITION.

Solution:

There are 11 letters in the word, with respect to number of repetitions of letters there are 4 distinct
letters (R, S, T, N), 2 sets of two alike letters (PP,II), 1 set of three alike letters (OOQO). The
following table will illustrate the combination of these sets and the number of words

S.No Letter Options Selections Arrangements
1 5 distinct Cs Cs x 5! = 2520
(R,S,T,N,P,1,0)
2 1 set of 3 alike (O00), 'C1x*Cy | 101 x2 0 x 52 =20
1 set of 2 alike (PP, I1)
3 1 set of 3 alike (O00), 'O1x%Cy | 101 X% Oy x B =300

2 distinct (R, S, T, N, P, I)
4 2 sets of 2 alike (PP, I1,00), 1 distinct | 3Cy x> Cy | 3Cy x° C} x 525 = 450

21x 2!

(R,S, T, N and remaining one in 2 alike)
5 1 set of 2 alike (PP, I1,00), 3 distinct | *C; x5C5 | 3Cy x5 Cy x 5 = 3600
(R, S, T, N and remaining two in 2 alike)

Hence, the total number of strings are 2520 + 20 + 300 + 450 + 3600 = 6890.

Example 4.59 If a set of m parallel lines intersect another set of n parallel lines (not parallel to the
lines in the first set), then find the number of parallelograms formed in this lattice structure.

Solution:
Whenever we select 2 lines from the first set of m lines and 2 lines from the second set of n lines,
one parallelogram is formed. Thus the number of parallelograms formed is " Cy x™ Cs.
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Example 4.60 How many diagonals are there in a polygon with n sides?

Solution:
A polygon of n sides has n vertices. By joining any two vertices of a polygon, we obtain either a

side or a diagonal of the polygon. Number of line(: segm)ents obtained by joining the vertices of a
n(n—1

n sided polygon taken two at a time is "Cy = . Out of these lines, there are n sides of

polygon. Therefore, number of diagonals of the polygon is

n(n —1) n(n — 3)
— —n=——"\
2 2
In part;?;llg)r for a pentagon and heptagon (Septagon), number of diagonals respectively are @ =
5and —=— = 14.
2

Exercise - 4.3

1. If"Ciy =" Oy find 2 C,,.

2. 16 15Cy, ;=15 Cy 4, find 1.

3. If"P, =720, and "C, = 120, find n, r.

4. Prove that °C5 + 2 x5 Oy +1 C5 =17 C5.
5. Prove that °C5 + Zfzo(sg_”cu =10 (5.

6. If »t) (g :(v=3) p, — 57 . 16, find the value of n.

2" x1x3x---(2n—1)
n! '

7. Prove that >"C,, =
8. Prove thatif 1 <r <nthenn x™ Y., = (n—r+1)"C,_1.

9. (1) A Kabaddi coach has 14 players ready to play. How many different teams of 7 players could
the coach put on the court?

(i) There are 15 persons in a party and if each 2 of them shakes hands with each other, how
many handshakes happen in the party?

(iii)) How many chords can be drawn through 20 points on a circle?

(iv) In a parking lot one hundred , one year old cars, are parked. Out of them five are to be
chosen at random for to check its pollution devices. How many different set of five cars can
be chosen?

(v) How many ways can a team of 3 boys,2 girls and 1 transgender be selected from 5 boys, 4
girls and 2 transgenders?
10. Find the total number of subsets of a set with

[Hint: "Co +" C1 +" Co + -+ +" C,, = 2"
(1) 4 elements (ii) 5 elements (iii) n elements.

11. A trust has 25 members.

(1) How many ways 3 officers can be selected?
(i) In how many ways can a President, Vice President and a Secretary be selected?
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How many ways a committee of six persons from 10 persons can be chosen along with a chair
person and a secretary?
How many different selections of 5 books can be made from 12 different books if,

(i) Two particular books are always selected?
(i) Two particular books are never selected?

There are 5 teachers and 20 students. Out of them a committee of 2 teachers and 3 students is to
be formed. Find the number of ways in which this can be done. Further find in how many of these
committees

(i) a particular teacher is included?
(ii) a particular student is excluded?

In an examination a student has to answer 5 questions, out of 9 questions in which 2 are
compulsory. In how many ways a student can answer the questions?

Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly three
aces in each combination.

Find the number of ways of forming a committee of 5 members out of 7 Indians and 5 Americans,
so that always Indians will be the majority in the committee.

A committee of 7 peoples has to be formed from 8 men and 4 women. In how many ways can this
be done when the committee consists of

(i) exactly 3 women?
(i1) at least 3 women?
(ii1) at most 3 women?

7 relatives of a man comprises 4 ladies and 3 gentlemen, his wife also has 7 relatives; 3 of them
are ladies and 4 gentlemen. In how many ways can they invite a dinner party of 3 ladies and 3
gentlemen so that there are 3 of man’s relative and 3 of the wife’ s relatives?

A box contains two white balls, three black balls and four red balls. In how many ways can three
balls be drawn from the box, if at least one black ball is to be included in the draw?

Find the number of strings of 4 letters that can be formed with the letters of the word
EXAMINATION?.

How many triangles can be formed by joining 15 points on the plane, in which no line joining any
three points?

How many triangles can be formed by 15 points, in which 7 of them lie on one line and the
remaining 8 on another parallel line?

There are 11 points in a plane. No three of these lies in the same straight line except 4 points,
which are collinear. Find,

(i) the number of straight lines that can be obtained from the pairs of these points?
(i1) the number of triangles that can be formed for which the points are their vertices?

A polygon has 90 diagonals. Find the number of its sides?

4.6 Mathematical induction

Let us consider the sum of the first n positive odd numbers. These are 1,3,5,7,--- ,2n — 1. The first
odd number 1 which is equal to 1. The first two odd numbers are 1 and 3 and their sum is 4. Writing
these as follows helps us to see a pattern.

1=1

143 =
1+3+5 =9
1+3+5+7 =16

14+34+5+7+9 = 25
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and so on. We note that the right hand side of the expressions are the perfect squares 1,4,9,16,25- - -.
This pattern compels us to make the conjecture that the sum of the first n odd numbers is equal to n>.
Symbolically, we express this as,

143454 -+ (2n—1)=n?%

However we have only made a conjecture. In order to prove the conjecture we shall use the Principle
of Mathematical Induction. Mathematical Induction is a method or technique of proving mathematical
results or theorems of the above kind. This technique relies upon making conjectures by observing all
possible cases of a specific result. It is well suited for proving results in algebra or in other disciplines
of mathematics where results or theorems are stated in terms of n, n being a positive integer. The
process of Mathematical Induction may be compared to that of climbing an infinite staircase.

In order to ensure that we complete the climb, it is sufficient to ensure the following.

(a) We can climb the first step.
(b) Once we have reached a particular step of the staircase, we can climb to the next step.

Being sure of (a) and (b) will enable us to climb all the steps in the staircase. Similarly, when we apply
this method to prove a mathematical statement P(n), the process of induction involves the following
steps.

Figure 4.16

(Step 1: Verify that the statement is true for n = 1, that is, verify that P(1) is true. This is akin t()\
climbing the first step of the staircase and is referred to as the initial step.

Step 2: Verify that the statement is true for n = k + 1 whenever it is true for n = k, where k
is a positive integer. This means that we need to prove that P(k + 1) is true whenever
P(k) is true. This is referred to as the inductive step.

Step 3: If steps 1 and 2 have been established then the statement P(n) is true for all positive

k mtegers n. )

One of the interesting method of proof in Mathematics is by the Mathematical induction. We shall
illustrate the method through problems. As an illustration of the process let us revisit a well known
result through an example below:
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Example 4.61 By the principle of mathematical induction, prove that, for all integers n > 1,

1
14243+ +n= @
Solution:
Let,
1
P(n)=1+2+3+-+n= n(”; )

o . 1(1+1) .
Substituting the value of n = 1, in the statement we get, P(1) = 5 = 1. Hence, P(1) is
true.

Let us assume that the statement is true for n = k. Then
k(k+1
Pk)=1+2+3+..+ k= (TH
We need to show that P(k + 1) is true. Consider,
kE(k+1
Pk+1)=14243+---+Ek+(k+1)= %—f—(kﬁ—l).

fhatts k(k 20k +1)  (k+1)(k+2
1
plos 1)< BEFDF2E+D (b (k+2)
2 %
This implies, P(k + 1) is true. The validity of P(k + 1) follows from that of P (k). Therefore by

the principle of mathematical induction, for all integers n > 1,

1
1+2+3+-~+n=@.

Example 4.62 Prove that the sum of first n positive odd numbers is n2.

Solution:

Let P(n) =1+3+5+---+ (2n — 1) . Therefore P(1) = 1 = 1% is true.
We assume that P(k) =1+ 3+ 5+ ...(2k — 1) is true forn = k. Thatis P(k) = k?
We need to prove P(k + 1) = (k + 1)2

Plk+1) =1+34+5+...(2(k+1)-1)
=14+3+5+7+...+2k—1)+2k+1

= P(k)+2k+1
=K +2k+1=(k+1)

This implies, P(k + 1) is true. Hence, by the principle of mathematical induction, P(n) is true for
all natural numbers.
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Example 4.63 By the principle of mathematical induction, prove that, for all integers n > 1,

2 n(n+ 1)(2n + 1)'

1P+2° 43+ +n G

Solution:

Let,

1)(2 1
P(n) ::12+22+32+...+n2:n(”+ )6( n+ )

(14 1)(2(1)+1)

Substituting n = 1 in the statement we get, P(1) =
Let us assume that the statement is true for n = k. Then

= 1. Hence, P(1) is true.

k(k+1)(2k+1
P) =124+ 1324 k2 = P )6( +1)

We need to show that P(k + 1) is true. Consider

Plk+1) = P2+22+3 4+ -+ K> +(k+1)°

k(k+1)(2k +1) 4+ 6(k + 1)
6
(k+1) (k(2k +1) +6(k + 1))
6
(k+1) (2k*> + Tk + 6)
6

(k+1)[(k+2)(2k + 3)]

6
(E+1)[((E+1)+1)(2(k+1)+1)]

6

That is, . " .
1 1 1) (2 1 1
P 1= EEDE D+ DD 1Y)
This implies, P(k + 1) is true. The validity of P(k + 1) follows from that of P(k). Therefore by

the principle of mathematical induction,

1(2n+1
12+22+32+...+n2:n(n+ )6( n ),foralanL

Example 4.64 Using the Mathematical induction, show that for any natural number 7,

L SRS SN S |
1.2 23 34 nin+1) n+1
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Solution: 1 1 1 ] n o .
Let P(n) := T3 + 23 + 34 koo g n(n+1) =T Substituting the value of n = 1, in the
statement we get, P(1) = 1—12 = —. Hence, P(1) is true. Let us assume that the statement is true
for n = k. Then '
S H E B S
12 23" 34 k(k+1) k+1

We need to show that P(k + 1) is true. Consider,

11 1 1
23 347 T k) TR DG+

1
(k + 1)(k +2)

1
P(k+1) = 75+

= P(k) +

1) ) )(k‘+2)
1(I k}r2>
(k: J];ik; 1)

1 ((k+1) (k+1)
k+1< k+2 ) (k+2)

k

1
i
1
kE+1

This implies, P(k + 1) is true. The validity of P(k + 1) follows from that of P(k). Therefore, by
the principle of mathematical induction, for any natural number 7,
1 1 n

1 1
2723 32 T D) nal

Example 4.65 Prove that for any natural number n, a™ — b" is divisible by a — b, where a > b

Solution:
Let
P(n) :=a" — b", is divisible by a — b.

Substituting the value of n = 1, in the statement we get,
P(1)=a—0b,

which is divisible by a — b. Hence, P(1) is true. Let us assume that the statement is true for n = k.
Then P(k) = a* — b*, is divisible by a — b. We can write

P(k)=a* —b" = Xa—b), A €N.
We need to show that P(k + 1) = a**1 — b¥*1 is divisible by a — b.

P(k+1) = o* —p+

AL bk bt ph

= a(a® — b*) + b*(a — b)

= a(Ma — b)) +b"(a —b)

(a —b) (aX + b¥)

= (a—bA, M =ar+b°, A\ €N,

191 4.6 Mathematical induction



www.thtextbooks.in

which is divisible by a — b. This implies that P(k -+ 1) is true. The validity of P(k+ 1) follows from
that of P(k). Therefore by the principle of mathematical induction, a™ — 0™ is divisible by a — b,
where a > b, for all natural numbers 7.

Example 4.66 Prove that 3*"*2 — 8n — 9 is divisible by 8 for all n > 1.

Solution:
Let
P(n) := 3*"*? — 8n — 9, is divisible by 8.
Substituting the value of n = 1, in the statement we get,

P(1) = 3%t —8(1) — 9 = 64,

which is divisible by 8. Hence, P(1) is true. Let us assume that the statement is true for n = k.
Then P(k) = 3%*+2 — 8k — 9, is divisible by 8. We can write

P(k) = 3%*%t2 _8k —9 =28k, k; €N and therefore,
322 — 8k, + 8k +9.

We need to show that P(k + 1) = 32(-+1D+2 _ 8(k 4- 1) — 9, is divisible by 8.
Consider,

Pk+1) = 32*+D+2 _g(k +1)—9
= 3232 _8k-8-9
= 3*(8k; + 8k +9) — 8k — 17
= 72k, + 64k + 64
= 8(9%; + 8k +1)
= 8ky, ky =9 +8k+1€N

which is divisible by 8. This implies that P(k + 1) is true. This means that the validity of P(k + 1)
follows from that of P(k). Therefore by the principle of mathematical induction, 3***? — 8n — 9 is
divisible by 8 for all n > 1.

Example 4.67 Using the Mathematical induction, show that for any integer
n>2 30> (n+1)>

Solution:

Let P(n) be the statement that 3n* > (n + 1)? with n > 2. Therefore the first stage is n = 2.
Now, P(2) =3 x 22 =12 and 3> = 9. As 12 > 9 we get P(2) is true.
We assume that P(n) is true for n = k.
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Now,

P(k+1) = 3(k+1)>=3k*+6k+3
= P(k) + 6k + 3
> (k+1)2+6k+3
= k* +8k +4
= k> + 4k + 4+ 4k
= (k+2)2+4k
> (k +2)? since k > 0.

This is the statement P(k + 1). The validity of P(k + 1) follows from that of P(k). Therefore by
the principle of mathematical induction, for all n > 2, 3n* > (n + 1)%

Example 4.68 Using the Mathematical induction, show that for any integer
n>2  3">n?

Solution:

Let P(n) be the statement that 3" > n? with n > 2. Therefore the first stage is n = 2. Now,
P(2) =32=9and 22 = 4. As 9 > 4, we get P(2) is true

We assume that P(n) is true for n = k. Thatis P(k) > k% Now,

Pk+1) = 31 =3x3"=3 x P(k)
> 3k
> (k+1)2, by Example 4.67.

Hence, for any integer n > 2, 3" > n2.

Example 4.69 By the principle of mathematical induction, prove that, for n € N,

in (%2
cos o + cos(a + ) + cos(a+26) + - - - + cos(a + (n — 1)) = cos (a + u _21)6) x - : ((2))
S11n bl
Solution:
Let P(n) := cos(a) + cos(a + B) + cos(a + 28) + ... + cos(a + (n — 1)3). Then,
cos(a).sin(2)
P(1) = cos(a) = Tg)?,

which shows P(1) is true. We now assume that P(n) is true for n = k. That is,

= sin (X8
cos(a) +cos(a + ) + cos(a +28) + - - - + cos(a + (k — 1)3) = cos (cH—(k 21)5) X — ( )

We need to prove P(k + 1) is true. Now,
P(k+1) = cos(a) + cos(a + B) + cos(a + 28) + - - - + cos(a + (k — 1)) + cos(a + kf3)
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Then,
P(k+1) = P(k) + cos(a + kpB)

cos (a + —(k_;)ﬁ) sin (%)
= + cos(a + kf3)

(
_ Sm1<§> { <a L ‘2”5) i (’f) + cos(a + kf)sin (g)]
(T C Rl
o)
) () )
()l
) g a-l—kﬁ))]
(Gl
) i (82) s 20t 49)|
i) (9
(cosa — cos (a + kB) + 2 cos(ax + k3))

) sin (kﬁ) + Slg_ (cos a + cos(a + kf3))

B .
) sin (%) 4= % (2 coS (oz = ?) cos (Tkﬁ

2
48
— —COSSi(Z[(E)Q ) {sin %) Cos (g) + sin g oS (%)]

COS

I
w0
=
E
—
M|E
_ 1

+
E
/_\

@
/\/‘\ /\

n
4,
=)
T~
N[@

_|_
@
NGl =}
VRS
[\
@,
5
VR
Q
_|_
“|m

That is,
cosa + cos(a + ) + cos(a+ 203) + - - - + cos(a + (k — 1)5) + cos(a + k)

oo ) 22

“T2) 7 (@)
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This implies that P(k + 1) is true. The validity of P(k + 1) follows from that of P(k). Therefore
by the principle of mathematical induction,

cosa + cos(a + ) + cos(a + 26) + - - + cos(a + (n — 1)5)

= 19), n (7
7l

Example 4.70 Using the Mathematical induction, show that for any natural number n, with the
assumption i? = —1,

= coS (a T

(r(cos@ +isinf))" = r™ (cosnf + isinnf),

Solution:
Let,
P(n) = (r(cosf +isinf)" = r" (cosnf + isinnd) .

Substituting the value of n = 1, in the statement we get,
P(1) = (r(cos 0 +isinf))" = r (cos +isin6) .
Hence, P(1) is true. Let us assume that the statement is true for n = k. Then
(r(cos @ + isin6))* = r¥ (cos k6 + i sin k6) ,
We need to show that P(k + 1) is true. Consider,

P(k+1) = (r(cosf +isinf))*

= (r(cos® +isin®))" x r(cos + isin )
¥ (cos k6 + isin k@) x r(cosf + isin 6)
"1 x ((cos k cos  + i* sin k6 sin 0) + i(sin k6 cos 0 + cos k6 sin 0))
¥t % ((cos k6 cos § — sin k@ sin 0) + 4 (sin k6 cos 0 + cos kO sin )
r*T1 % (cos(k 4+ 1)0 + isin(k 4 1)8) .

This implies that P(k + 1) is true. The validity of P(k + 1) follows from that of P(k). Therefore
by the principle of mathematical induction, for any natural number n,

(r(cos@ +isinf))" = r" (cos(nf) + i sin(nh))

Elg What we have proved in Example 4.70 is called the Demoivre’s theorem for natural
numbers, which will be studied in detail in the second year of Higher Secondary course.
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@ Exercise - 4.4

. By the principle of mathematical induction, prove that, for n > 1

0’

13+23+33+---+n3=( 5

By the principle of mathematical induction, prove that, for n > 1

on—1)(2n + 1
12+32+52+---+(2n—1)2=n<n ;“H >.

Prove that the sum of the first n non-zero even numbers is n? + n.
By the principle of Mathematical induction, prove that, forn > 1

1 2
12423434+ +n(n+1)= n(n + z)2(71—1— )

Using the Mathematical induction, show that for any natural number n > 2,

(B D)

Using the Mathematical induction, show that for any natural number n > 2,

1+ 1 N 1 - 1 n-—1
142 14243 1+2+3+14 1+2434+---+n n+1

. Using the Mathematical induction, show that for any natural number n,

1 1 1 1 n(n + 3)
1.23 234 345 n(n+1).(n+2) 4n+1)(n+2)

. Using the Mathematical induction, show that for any natural number n,

PRI ! ="
(Bn—1)(3n+2) 6n+4

1
25 58 811

Prove by Mathematical Induction that

H+2x2D+Bx3)+...+(nxn)=Mn+1)! -1

Using the Mathematical induction, show that for any natural number n, 22" — 3*" is divisible by
T +y.

By the principle of Mathematical induction, prove that, forn > 1

n3
P42 43+ 4% > 5

Use induction to prove that n® — 7n + 3, is divisible by 3, for all natural numbers 7.

Use induction to prove that 5" ™! + 4 x 6™ when divided by 20 leaves a remainder 9, for all natural

numbers n.
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14. Use induction to prove that 10" + 3 x 4""2 + 5, is divisible by 9, for all natural numbers 7.
15. Prove that using the Mathematical induction

. . ™ . 2T
sin(a) + sin (Oé+€) + sin (oHrF) +o

" (1)
Sl | —
12/

N (n—1)m
(n — 1)7r) oo (OH_ 2 >

X
6 sin (1)

+ sin (oz +
12

Exercise - 4.5

Choose the correct or the most suitable answer
1. The sum of the digits at the 10t place of all numbers formed with the help of 2, 4, 5, 7 taken all
at a time 1S
(1) 432 (2) 108 3) 36 4) 18

2. In an examination there are three multiple choice questions and each question has 5 choices .
Number of ways in which a student can fail to get all answer correct is

(1) 125 (2) 124 (3) 64 4) 63
3. The number of ways in which the following prize be given to a class of 30 boys first and second in
mathematics, first and second in physics, first in chemistry and first in English is

(1) 30* x 292 (2) 30% x 293 (3) 302 x 29* (4) 30 x 29°.
4. The number of 5 digit numbers all digits of which are odd is

(1) 25 2) 5° (3) 56 (4) 625.
5. In 3 fingers, the number of ways four rings can be wornis - -------- ways.

(1) 4% -1 2) 3* (3) 68 4) 64
6. If "I P, ) = (@)(“3)]3”, then the value of n are

(1) 7and 11 (2) 6and 7 (3) 2and 11 (4) 2 and 6.
7. The product of r consecutive positive integers is divisible by

(1) ! ) (r—1)! 3) (r+1)! 4) r".

8. The number of five digit telephone numbers having at least one of their digits repeated is

(1) 90000 (2) 10000 (3) 30240 (4) 69760.
9. If “2_“6’2 —a’—a C'; then the value of ’a’ is

(1 2 2 3 3) 4 4 5
10. There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any
two points is

(1) 45 (2) 40 (3) 39 (4) 38.
11. The number of ways in which a host lady invite 8 people for a party of 8 out of 12 people of whom
two do not want to attend the party together is

(1) 2 x C7 +1O Cg (2) 1107 —|—10 Cg (3) 1208 —10 Cﬁ (4) 1006 + 21
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The number of parallelograms that can be formed from a set of four parallel lines intersecting
another set of three parallel lines.

(1) 6 2) 9 3) 12 4) 18
Everybody in a room shakes hands with everybody else. The total number of shake hands is 66.
The number of persons in the roomis - -« -«------

(1) 11 2) 12 3) 10 “4) 6
Number of sides of a polygon having 44 diagonalsis ------

(1) 4 (2) 4! 3) 11 4) 22
If 10 lines are drawn in a plane such that no two of them are parallel and no three are concurrent,
then the total number of points of intersection are

(1) 45 (2) 40 (3)10! (4) 210
In a plane there are 10 points are there out of which 4 points are collinear, then the number of
triangles formed is

(1) 110 (2) 1°C; (3) 120 4) 116
In2"C5 " C3 = 11 : 1 then n is

(1) 5 (2) 6 3)11 (4)7
(n_l)Cr —|—(n_1) C(rfl) 18

(1) C, 2) 1, 3)"C, CONET
The number of ways of choosing 5 cards out of a deck of 52 cards which include at least one king is

(1) Cs (2) #Cs (3)?Cs +*° Cs (4)°°C5 —* Cs.
The number of rectangles that a chessboard has - - -

(1) 81 2) 9° (3)1296 (4) 6561
The number of 10 digit number that can be written by using the digits 2 and 3 is

(1) 1°Cy 42 Oy (2) 210 (3)210 -2 4) 10!
If P, stands for " P. then the sum of the series 1 + P, + 2P, +3P;+ --- 4+ nk, is

(D) Py (2) Py —1 B) P +1 (4)(n+1)P(n71)
The product of first n odd natural numbers equals

(1) >C,, x" P, (2) (%)” xnC, x" P, (3)(1—1)" x2C, x> P, (4"C, x" P,
It "Cy, "Cs, "Cg are in AP the value of n can be

(1) 14 2 11 3)9 (4)5
1+34+5+74+---+17isequal to

(1) 101 (2) 81 3) 71 4) 61
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4 )
Summary

In this chapter, we acquired the knowledge of

e Factorial of a natural number n is the product of the first n natural numbers.
e n! =n(n —1)!, for any integer n > 1.
e The number of ways of arranging n unlike objects is n!.

e The number of distinct permutations of r objects which can be made from n distinct objects

is
n!

- (n—r)!

"P, =nn—1)(n—2)---(n—r+1).

e The number of permutations of n objects taken all at a time where P, objects one of first
kind, P, objects one of second kind, --- P}, objects one of the k" kind and the rest, if any
are all different and is given by

n!
PR .- Pl

e Order matters for a permutation where as order does not matter for a combination.

e The number of combinations of n different objects taken r at a time denoted by "C.. is given
by
"o n! _nn-1)(n—-2)---(n—r+1)

\_ ri(n —r)! 7! )

ICT CORNER-4(a)

Expected Outcome =

'

Step—1: Open the Browser and type the URL Link given below (or) Scan the QR Code. GeoGebra
worksheet Permutations and Combination will appear. You can select the worksheet you
want to open, for example open Combination Game

Step-2: Press Instruction button and read how to play. After reading once again press Instruction
button and press Start the game.

Step-3: Find the number of combination to dress up the girl with 3 Shirts and 2 Skirts. After selecting
each pair, click on Camera picture, so that the selected will appear in right space. After
completing the selection press check button to see the result.
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3w e e Eare e Brre Bty nd fes et

Afien reading Sus prens B TRUC TION” Bumse
poieicpmpiiptio \

Ll o

Go through Remaining work sheets to gain clear idea of Permutations and Combinations

*Pictures are only indicatives.

Browse in the link

Permutations and Combinations: https://ggbm.at/gVnmcKp9
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ICT CORNER-4(b)

Expected Outcome =

PERMUTATIONS
There are 7 balls of different colours in a bag, and
I you want & select and arvange S Dalls, find the

(((((((

New quastion

COMBINATIONS
Treere are 7 balls of different colours in 3 bag, and
B you wart to ebect § bails, find the number of ways

Step-1: Open the Browser and type the URL Link given below (or) Scan the QR Code.

Step-2: GeoGebra worksheet “Problems on Permutations and Combination” will appear. By clicking

on “New Problem” new question will be generated as many times you want to do. You have
to work out the problem yourself and find the answer. Now click on “Show Solution” on each
Permutation and Combination to get the respective solution and check with your answer.

[ https//ggbm.at/Xv2B4SSz
Q, hitps://ggbm.at/Xv28455z - gmail.com Search

There are 7 balls of different colours in a bag, and
If you want to select and arrange 5 balls, find the
number of ways.

[ show soiution

Step-2
« GeoGebra ¥ 3
L Problems on Permutation and Combinations
PERMUTATIONS New question COMBINATIONS

There are 7 balls of different colours in a bag, and
If you want to select 5 balls, find the number of wa)

| |show soiution

*Pictures are only indicatives.

Browse in the link

Permutations and Combinations: https://ggbm.at/Xv284SSz
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Binomial Theorem,

Chapter 5 Sequences and Series

“Life stands before me like an eternal spring with new and brilliant clothes”

Johann Carl Friedrich Gauss

5.1 Introduction

Binomial theorem facilitates the algebraic expansion of the binomial (a + b) for a positive integral
exponent n. Binomial theorem is used in all branches of Mathematics and also in other Sciences. For
example using the Binomial theorem one can easily find the coefficient of 22° in the expansion of
(2x — 7)%. If one wants to know the maturity amount after 10 years on a sum of money deposited in
a nationalised bank at the rate of 8% compound interest per year or to know the size of population of
our country after 15 years if the annual growth rate and present population size are known, Binomial
theorem helps us in finding the above quantities. The coefficients in the binomial expansion of (a +
b)", n € N, are called binomial coefficients. Binomial theorem plays a vital role in determining the
probabilities of events when the random experiment involves finite sample space and each outcome
is either success or failure. In this chapter we learn binomial theorem and some of its applications.

Greek Mathematician Euclid mentioned the special case of binomial theorem for exponent 2.
Binomial theorem for exponent 3 was known by 6" century in India. In 1544, Michael Stifel
(German Mathematician) introduced the term binomial coefficient and expressed (1 + x)™ in terms
of (1+ )" .

The German Mathematician Johann Carl Friedrich Gauss is one of the
most renowned Mathematicians in history. Many have referred to him as
the “Prince of Mathematics ”. He has contributed in the areas of Number
theory, Physics, Astronomy etc., Number Theory was Gauss’s favourite field
and he referred to Number theory as the “Queen of Mathematics”. Anecdote
involves, his school teacher who wanted to test the students asked them to
sum the integers from 1 to 100. Within a few seconds Gauss shown the
answer has 5050. Nobody is sure which method of summing an arithmetic
sequence Gauss used as a child.

J ohan Carl
Friedrich Gauss
(1777-1855)

Over the period of thousand years, legends have developed mathematical problems involving
sequences and series. One of the famous legends about series concerns the invention of chess, where
the cells of chess board were related to 1,2, 4,8, ... (imagine the number related to 64" cell). There
are many applications of arithmetic and geometric progressions to real life situations.

In the earlier classes we have learnt about sequences, series. Roughly speaking a sequence is an
arrangement of objects in some order and a series is the sum of the terms of a sequence of numbers.
The concept of infinite series helps us to compute many values, like sin %ﬂ', log 43 and €?° to a desired
level of approximation. Sequences are important in differential equations and analysis. We learn more

about sequences and series.

202



www.thtextbooks.in

[Learning Objectives )

On completion of this chapter, the students are expected to know

the concept of Binomial Theorem, to compute binomial coefficients and their applications
the concepts of sequences and series

how to compute arithmetic, geometric and harmonic means

how to find the sum of finite and infinite series of real numbers

how to add series using telescopic summation

\_° how to apply binomial, exponential and logarithmic series Y,

5.2 Binomial Theorem

The prefix bi in the words bicycle, binocular, binary and in many more words means two. The word
binomial stands for expressions having two terms. For examples (1 + z), (x + y), (z* + zy) and
(2a + 3b) are some binomial expressions.

5.2.1 Binomial Coefficients
In Chapter 4 we have learnt and used the symbol "C, which is defined as
nn—1)Mn-2)...(n—(r—1)) n!

= r(r—1)(r—-2)...1 :(n—r)!r!'

Since "C, occurs as the coefficients of 2" in (1 + z)” n € N and as the coefficients of a"b" "
in (a + b)", they are called binomial coefficients. Though the values of "C, can be computed by
formula, there is an interesting simple way to find "C, without doing cumbersome multiplications.

Pascal Triangle

The Pascal triangle is an arrangement of the values of "C, in a triangular form. The (k + 1)* row
consists values of

k k k k k
CO, Cly C2a C37"'a Ck

In fact, the Pascal triangle is

°Cy 1
'c, ¢y 11
’Cy 0y PGy 1 2 1
3Cy  *Cp Cy, 3Gy = 1 3 3 1
‘c, ¢y fc, tcy fcy 1 4 6 4 1
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Recall the expansion and observe the coefficients of each term of the identities (a + 0)°, (a + b)!,
(a + b)?, (a + b)3. There is a pattern in the arrangements of coefficents

(a+0)° =1 1
(a+b)'=a+b 11
(a+b)* = a* + 2ab + b 1 2 1

(a+0b)* = a® + 3a®b + 3ab® + b* 1 3 3 1

If we observe carefully the Pascal triangle, we may notice that each row starts and ends with 1
and other entries are the sum of the two numbers just above it. For example ‘3’ is the sum of 1 and 2
above it; ‘10’ is the sum of 4 and 6 above it. We will prove in a short while that

(a + b)n —_ nCO anbO + ncl anflbl S nCT avrTh” et ncn aObn.

which is the binomial expansion of (a + b)". The binomial expansion of (a + b)" for any n € N can
be written using Pascal triangle. For example, from the fifth row we can write down the expansion of
(a+ b)* and from the sixth row we can write down the expansion of (a + b)® and so on. We know the
terms (without coefficients) of (a + b)5 are

a®, a*b, a®v?, a3, ab*, v’
and the sixth row of the Pascal triangle is
1 5 10 10 5 1
Using these two we can write
(a+b)° = a® + 5a*b + 10a*b* 4 10a*b® + 5ab* + b°.

The Pascal triangle can be constructed using addition alone, without using any multiplication or
division. So without multiplication we can write down the binomial expansion for (a + b)" for any
n € N.

The above pattern resembling a triangle, is credited in the name of the seventeenth century French
Mathematician Blaise Pascal, who studied mathematical properties of this structure and used this
concept effectively in Probability Theory.

5.2.2 Binomial theorem for positive integral index
Now we prove the most celebrated theorem called Binomial Theorem.

Theorem 5.1 (Binomial theorem for positive integral index): If n is any positive integer, then
(a + b)n _ nCO anbO + ncl anflbl S nCT avrh” et ncn aObn.

Proof. We prove the theorem by using mathematical induction. For any positive integer n, let P(n)
be the statement

(a+ b)n —_ nCU anbO + ncl a”flbl S ncr av Ty et ncn aObn.
Since

'Cy =1 and 'C, =1,
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the expression in the right hand side of P(1) is a'b" + a°b! which is same as a + b; the left hand side
is (a + b)'. Hence P(1) is true.
We assume that for a positive integer k, P(k) is true. That is,

(a+b)F = *Cya"t® + *Cya* ' + - + FCL "V + -+ FC a0

Let us use the identity
ncr + ncr—l = n+1Cr

in the proof. Now
(a+b)* = (a+b)(a+0b)*
= (a+0b) [kCO a"’ + FCiad o -+ FCL AT 4+ -+ R, aobk}
_ [kco a0 FCL b -+ FC, BT - RO, albk]
+ [kco a4 FC a4 FC, P 4 ROy, aobk+1}
—  kCyaR 10 + [kcl + kco] aFpt 4t [kCT + kcrq] qk-rtipr
+- 4+ ["Cp + FCrr ] @'t 4 FCLa%b !
— ROy R0 4 RO, gFpY 4 RTIC, R 4 ... 4 RFIC, gF Ty
feee g MO QM 4 RO, aOBR
(a+ b)k+1 _ k+1CO a0 4 k+1cla(k+1)—1b1 + k+1c2 ak+D=2p2
+MHC, a4 G @ DT B %

This shows that P(k + 1) is true whenever P(k) is true. Thus, by the principle of mathematical
induction, P(n) is true for all natural numbers n. Hence,

(a+b)"="Coa"t’ + "Cya"'b' +--- + "C,a" V" + -+ 4 "C,ab",n € N.

L

(i) The expansion of (a + b)",n € N can also be written as
(a+b)" = Xp_,"Cra" *b* or 27_, "Cy ab"*.

(ii) The expansion of (a + b)",n € N, contains exactly (n + 1) terms.

(iii) In (a + b)" = X7_,"Cj a" *b*, the powers of a decreases by 1 in each term,
whereas the powers of b increases by 1 in each term. However, the sum of powers
of a and b in each term is always n.

(iv) The (r + 1) term in the expansion of (a + b)",n € N, is

T ="Ca""b", r=0,1,2,--- n.

(v) Inthe product (a +b)(a+b)---(a+0b),n times, to get b, we need any r factors
out of these n factors. This can be done in "C, ways. That is why, we have "C,
as the coefficient of a"~"b".

(vi) In the expansion of (a + b)",n € N, the coefficients at equidistant from the
beginning and from the end are equal due to the fact that "C, = "C,,_, .
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(vii) In the expansion of (a + b)",n € N, the greatest coefficient is "Cn if n is even
and the greatest coefficients are "C n_1 Of "C ntl if n is odd.

(viii) In the expansion of (a + b)",n € N,
if n is even, the middle term is T%H = ”C% a" " zbz. If n is odd, then the two
middle terms are TnTﬂ 41 and TnTJrl 41

5.3 Particular cases of Binomial Theorem
(i) Replacing b by (—b), in the binomial expansion of (a + b)",n € N, we get
((I . b)n — nCO anbO o ncl an—lbl + nC2 an—2b2 .
+<_1)r nCT AT S (_1)n ncn aObn.

Observe that the sign ‘+’ and ‘—’ appear alternately in the binomial expansion of (a — b)".
(ii) Replacing a by 1 and b by z, in the binomial expansion of (a + b)", we get

(1_|_$)n: nCO +nclx+ nC2x2_|_”._|_nCTxr_|_‘__+ncnxn.

In particular, when z = 1, "Cy + "Cy + "Cy + -+ "C, =2

El@ If X is a set containing n elements, then we know that "C, is the number of
subsets of X having exactly r elements. So by adding "C, forr =0,1,2,....n
we get the number of subsets of X. So by using the above identity we see that a
set of n elements has 2" subsets.

(i) (1—-2)"= "Cy — "Cyx+ "Co2?—---+(=1)" "C, 2" + -+ -+ (—1)"2". In particular, when
xr=1 "Cy +"Cy +"Cy +---="C; + "C3 + "C5 +--- =21

Example 5.1 Find the expansion of (2x + 3)°.
Solution:
By taking @ = 2z, b = 3 and n = 5 in the binomial expansion of (a + b)™ we get
(2z+3)° = (22)° + 5(22)*3 + 10(22)33% + 10(2x)?3° + 5(2x)3* + 3°
= 322° + 240z* + 720z° 4 1080z + 810z + 243.

Example 5.2 Evaluate 98%.

Solution:
By taking a = 100, b = 2 and n = 4 in the binomial expansion of (a — b)" we get

98* = (100 —2)*

1Cy 100" — Cy 10032 + *C, 100%22 — 1C5100'2% + “C, 10027
100000000 — 8000000 4 240000 — 3200 + 16

92236816.

Binomial Theorem, Sequences and Series 206



www.thtextbooks.in

Example 5.3 Find the middle term in the expansion of (z + y)°.

Solution:
Here n = 6; which is even. Thus the middle term in the expansion of (z + ) is the term containing
23y3, that is the term %Cj 23y3 which is equal to 20231°.

Example 5.4 Find the middle terms in the expansion of (z + y)7.

Solution:
As n = 7 which is odd, the terms containing z*y* and 2%y* are the two middle terms. They are
"Cs 2*y® and "C, 2%y* which are equal to 352%y® and 3523y,

Example 5.5 Find the coefficient of 2% in the expansion of (3 + 2x)1°.

Solution:
Let us take a = 3 and b = 2z in the binomial expansion of (a + b)'°. Then, 2° will appear in the
term containing (22:)® and nowhere else. So the term containing z is

10 x9x8x7
10 436 _ 10~ 416 _ 409,16 _ 4,96 6 .10~ _ 10
C6ab— C4a[b_4>(3><2>(13(2x) 210 x 3% x 2°2°. [ CG C4]

So coefficient of 2% in the expansion of (3 + 2x)'% is 210 x 3%26.

Example 5.6 Find the coefficient of 2% in the expansion of (2 — 3z)".

Solution:
Let us take @ = 2 and b = —3x in the binomial expansion of (a + b)". Then, 23 will appear in the
term containing (—3z)? and nowhere else. So the term containing z? is

_7><6><5

T~ 433
Sl T 3x2x1

24(—3x)® = 35 x 2* x (—3)3x.

So coefficient of 2% in the expansion of (2 — 3z)7is 35 x 16 x (—27) = —15120.

Example 5.7 The 279, 37 and 4" terms in the binomial expansion of
(x + a)™ are 240, 720 and 1080 for a suitable value of z. Find z, a and n.

Solution:
It is given that 75 = 240, T3 = 720 and T} = 1080.

T, = "Cia™'a = 240 (1)
T3 = nCQIn_2CL2 = 720 (2)
T, = "Csz"3¢3 = 1080 (3)
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Dividing (2) by (1) and (3) by (2) we get

- w3 0

Slerg|e

From (4) and (5) . .

n—1 2(n-2)

Thus n = 5. Substituting n = 5 in (1) and (4) also dividing (1) by (4), we get

5xta B 240

]le

1

Thus 52° = 160 and hence = = 2. Substituting in (4) we get a = 3.

Example 5.8 Expand (22 — %)4.

Solution:
We have

+1Cs (22)' (—%)3 + 4Cy (22)° <_%>4

= (22)* - 4(20)° (%) T 6(20)? (%)2 . (%)Z (i)zl

11
— 4 2
= 162" — 160"+ 6 — — + 7

Example 5.9 Expand (22 + /1 — x2)5 + (22— V1-— w2)5.

Solution:
We have

(++ Mf = 5C, (22)° (mf +5C, (22) (m)l
159G, (a2)? (M)Q +5Cy (o) (VI—22)
+5C, (22) (m)“ + °Cy (22)° (MY

= 2'0 4 528V1 — 22 + 102%(1 — 2%) + 102*(1 — 2%)V/1 — 22

+52%(1 — 222 + (1 — 22)2(V1 — 22)

3
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(@2~ vI—2) = *c@) (VI“@) - i@ (VIa)
0@ (VI— @) — @ (VI
20 @) (VIZ@) G @) (VI
= 21— 5281 — 22 + 10251 — 2%) — 102*(1 — 2})V1 — 22
+52%(1 — 2%)* — (1 — 2°)* (V1 — 22)
Thus
(q,-? + mf + (ﬁ - mf — 210 +1025(1 — 22) + ba2(1 — #2)?]

= 2[z'° + 102° — 102® + 52%(1 — 222 + z%)]
= 2[z'® — 102® + 152° — 102* + 527

Example 5.10 Using Binomial theorem, prove that 6" —5n always leaves remainder 1 when divided
by 25 for all positive integer n.

Solution:
To prove this it is enough to prove, 6" — 5n = 25k + 1 for some integer k. We first consider the
expansion

(I+z)"="Co + "Cyx+ "Coz?4 -4+ "Cpo 2" 14+ "Cpz”,neN
Taking z = 5 we get (1 +5)" = "Cy + "C1 5+ "Cy 5%+ -+ + "C,_1 5" ! 4+ "C, 5". The above
equality reduces to 6" = 1 + 5n + 25("Cy +5"Cz + - -+ + "C, 5" 2).
That is,
6" —5n =1+25("Cy +5"C3 +---+ "C,5" %) =1+ 25k, k € N.

Thus 6™ — 5n always leaves remainder 1 when divided by 25 for all positive integer 7.

Example 5.11 Find the last two digits of the number 74,

Solution:
We have

7400 _ (72)200 _ (50 o 1)200

— 200C0 50200 . 200C1 50199 4.
+200C198 502(_1)198 4 200C199 50(_1)199 =+ 200C200 (_1)200

= 502 (2°C, 50'% — 200C; 5017 + ... 4 200C; g5 (—1)'%8) — 200 x 50 + 1.

As 50% and 200 are divisible by 100, the last two digits of 74 is 0 1.
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10.

11.

12.

13.

14.

15.

16.

5.

. Using binomial theorem, indicate which of the following two number is larger: (1.01)

) 1
. Find the constant term of (23:3 -
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Exercise - 5.1

. Expand (i) (202 — 3)* (i) (202 — 3vT—22)" + (222 +3vT —22)",

Compute (i) 102* (i) 99* (iii) 9.
1000000

10000. 0
1
. Find the coefficient of z'° in (x2 + —3) )
x
1\6
Find the coefficient of z2 and the coefficient of x° in (902 — —3) )
x

. Find the coefficient of 2 in the expansion of (1 + %)% (22 + —)°.
T

5

32

. Find the last two digits of the number 3%,
. If n is a positive integer, using Binomial theorem, show that, 9! — 8n — 9 is always divisible by

64.

If n is an odd positive integer, prove that the coefficients of the middle terms in the expansion of
(x 4+ y)™ are equal.

If n is a positive integer and 7 is a nonnegative integer, prove that the coefficients of " and z"~"
in the expansion of (1 + z)" are equal.

If a and b are distinct integers, prove that a — b is a factor of a™ — b, whenever n is a positive
integer. [Hint: write a”" = (a — b+ b)" and expand]

In the binomial expansion of (a + b)", if the coefficients of the 4" and 13" terms are equal then,
find n.

If the binomial coefficients of three consecutive terms in the expansion of (a + )" are in the ratio
1:7:42, then find n.

In the binomial expansion of (1 + )", the coefficients of the 5", 6'* and 7*" terms are in AP. Find
all values of n.

2 2 2 2 _ (2n)!

(nl)?

4 Finite Sequences

A sequence is a list of elements with a particular order. While the idea of a sequence of numbers,
ai, aq, - - - , 1s straight forward, it is useful to think of a sequence as a function whose domain is either
the set of first n natural numbers or N. Throughout this chapter, we consider only sequences of real
numbers and we will refer to them as sequences. The arithmetic sequences and geometric sequences
are also known as arithmetic progressions(AP) and geometric progressions (GP). Let us recall, the
basic definitions of sequences and series.

If X is any set and n € N, then any function f : {1,2,3,...,n} — X is called a finite sequence
on X and any function g : N — X is called an infinite sequence on X. The value f(n) of the
function f at n is denoted by a,, and the sequence itself is denoted by (a,,).

If the set X happens to be a set of real numbers, the sequence is called a numerical sequence or a
sequence of real numbers.

e Though every sequence is a function, a function is not necessarily a sequence.
e Unlike sets, where elements are not repeated, the terms in a sequence may be repeated. In

particular, a sequence in which all terms are same is called a constant sequence.
A useful way to visualise a sequence (a,,) is to plot the graph of {(n, a,) : n € N} which gives
some details about the sequence.

Binomial Theorem, Sequences and Series 210



www.thtextbooks.in

A

Figure 5.1

5.4.1 Arithmetic and Geometric Progressions

Progressions are some special cases of sequences where the terms of the sequences are either in
increasing form or decreasing form.

We recall some definitions and results which has been discussed in earlier classes on arithmetic
and geometric progressions.

Arithmetic Progression (AP)

e A sequence of the form

a, a+d,a+2d, a+3d, ..., a+(n—1)d, a+nd, ...

is called an arithmetic progression or an arithmetic sequence. In other words, each term (other
than the first term) of the sequence is obtained by adding a constant to its previous term; the
constant d is called common difference and the term « is called the initial term or first term.

e The n'" term of an arithmetic progression is given by 7, = a + (n — 1)d.

e The sequences V2, V24+ V3, V24 2V3, V2+3V3, ... and 12, 9, 6, 3, ... are arithmetic
sequences with common differences /3 and —3 respectively.

e [t is interesting to observe that 3, 7, 11 are three prime numbers which form an AP.

e Forn € N, T, = an + b where a and b are relatively prime, form an AP which contains infinitely
many prime numbers along with infinitely many composite numbers.

Geometric Progression (GP)

e A sequence of the form
3 n—1 n

a, ar, ar®, ar®, ..., ar"', ar", ...

with a # 0, and r # 0 is called a geometric progression or a geometric sequence. In other words,
each term (other than the first term) of the sequence is obtained by multiplying its previous term
by a constant; the constant r is called common ratio and the term a is called the initial term or
first term.

e The n'" term of a geometric progression is given by 7}, = ar™ .

e The sequences 1, 2, 4, 8, 16, ... and V2,2, 2v/2, 4, 4/2, 16, ... are geometric sequences
with common ratios 2 and v/2 respectively.

e Taking logarithm of each term in a geometric progression with positive common ratio yields an
arithmetic progression. i.e., If a, ar,ar?, ... is a GP with r > 0, then log a, log(ar), log(ar?), . ..
is an AP with common difference log r.

It is interesting to note that the constant sequence c, ¢, c, ... is an arithmetic sequence and is also a
geometric sequence if ¢ # 0.
Let us consider the special constant sequence 0, 0,0, 0, .... We have no problem in seeing this as

an arithmetic sequence. But when we try to see this as a geometric sequence clearly the initial term
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a must be 0. What can we say about the common ratio r? If we take r as 1, 2 or any other number
we get the same sequence 0,0, 0,0, .... We are left with the situation where a geometric sequence
has infinitely many common ratios. To overcome these confusions some mathematicians exclude this
sequence from the class of geometric sequences by assuming a # 0 in the definition. (We made this
assumption)

5.4.2 Arithmetico-Geometric Progression (AGP)

Combining arithmetic and geometric progressions, a new progression called arithmetico geometric
progression is formed. As we use the abbreviations AP and GP for arithmetic progressions and
geometric progressions, we use the abbreviation AGP for arithmetico geometric progression. AGP’s
arise in various applications, such as the computation of expected value in probability theory.

ﬁ)eﬁnition 5.1 )

A sequence of the form

a, (a+d)r, (a+2d)r? (a+3d)r?, ..., (a+ (n—Dd)r" ", (a+nd)r", ...

\is called an arithmetico-geometric progression or an arithmetico-geometric sequence. y,

Consider an AP:a,a+d,a+ 2d,. ..
GP: 1,712, ...

Then the AGP is a, (a + d)r, (a + 2d)r?, ...

Here, a is the initial term, d is the common difference and r is the common ratio of the AGP.

If we take r = 1, then the AGP will become an AP and if we take d = 0, then it will become
a GP. So the arithmetic and Geometric progressions become particular cases of AGP. This is a nice
situation to know the concept of generalization in mathematics.

We note that the n'" term of an AGP is given by T}, = (a + (n — 1)d)r"~'. All APs and all GPs
are AGPs.

For example, the AP 0,1,2,3,4,... and the GP 1, %, ;11, %, ... give the AGP %, %, %, %, e

The sequence 4, 14, 40, 104, 256, 608, . .. is also an example of an arithmetico-geometric progres-
sion. For this sequence a = 4, d = 3 and r = 2.

5.4.3 Harmonic Progression (HP)

Harmonic progression is one of many important sequences and is closely related to the arithmetic
progression. Harmonic progression is widely used.

Definition 5.2

A sequence hq, hs, hs,... is said to a harmonic sequence or a harmonic progression if

11 1 1 . : .
Tyt hat hat har - 1san arithmetic sequence.

Note that a sequence is in harmonic progression if reciprocal of its term are in arithmetic progression.
But we should not say that harmonic progressions are reciprocals of arithmetic progressions; in fact,
if an arithmetic sequence contains a zero term, then its reciprocal is not meaningful. Of course, if
an arithmetic progression contains no zero term, then its reciprocal is a harmonic progression. So a
general harmonic progression will be of the form

1 1 1 1
a a+d a+2d a+3d
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As the denominator of a fraction cannot be 0, a+ kd # 0 for any integer k£ > 0. So the condition — is
not a whole number is essential. Problems in harmonic progression can be converted into problems in
arithmetic progression and be solved using arithmetic progression techniques and formulae.

R (i) The sequence (£) = 1,1, ,--- is a harmonic sequence. One can draw the graph
of
{(n, %) : n € N} and visualize the harmonic sequence ().

9
(i) If a, b, ¢ are in HP, then b — —

a+c
(ii1) In a triangle, if the altitudes are in AP, then the sides are in HP

Example 5.12 Prove that if a, b, c are in HP, if and only if £ = ‘;T_f:’

Solution:
If a, b, c are in HP, then X, ¢, L are in AP. Thus, we have 2 = 1 4 1 which gives ab — ac = ac — be.
So, a(b—c) = c(a—b), which gives ¢ = 2=, On the other hand, if ¢ = =2, then a(b—c) = c(a—b).

b—
Dividing each terms of both sides by abc, we get 1 — & = 7 — . Thus, L, 7. X are in AP and hence

@ b
a, b, c are in HP.

Example 5.13 If the 5" and 9™ terms of a harmonic progression are 15 and 4, find the 12" term
of the sequence.

Solution: 1

Let h,, be the harmonic progression and let a,, = = Then a5 = 19 and a9 = 35. As a,,’s form an

arithmetic progression, we have a + 4d = 19 and a+ 8d = 35. Solving these two equations, we
getla = 3and d = 4. Thus a;» = a + 11d = 47. Thus the 12" term of the harmonic progression

1S E

What can we say about constant sequences? All constant sequences other than the zero sequence
are harmonic progressions also.
5.4.4 Arithmetic, Geometric and Harmonic Mean

We know the concept of “average”. There are many “averages”. Arithmetic mean (AM), Geometric
mean(GM) and Harmonic mean(HM) are also some averages. Let us now recall the definitions of
arithmetic mean and geometric mean, where the terms need not in AP or GP.

Arithmetic Mean and Geometric Mean

( Definition 5.3 )

Let n be any positive integer. Let ay, as, as, . . ., a, be n numbers . Then the number

a1+a2—|—a3+---+an

n
\is called the arithmetic mean of the numbers a1, as, as, . .., a,. y,
The numbers ai, as,as, ..., a, need not be distinct and it is not necessary that the numbers are

positive. It easily follows from the definition that 16 is the arithmetic mean of the numbers
14,14, 17,20, 15.
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Taking the multiplication in place of addition and n*" root in place of division by 7 in the definition
of arithmetic mean we get the definition of geometric mean.

ﬁ)eﬁnition 54 )

Let n be any positive integer. Let ay, as, as, . . . , a, be n non-negative numbers. Then the number

v a1a203 . . . Ay

\is called the geometric mean of the numbers aq, as, as, . .., ay,. y,

Here also the numbers aq, as, as, . . ., a, need not be distinct but it is necessary that the numbers are
non-negative. The geometric mean of the numbers 4, 6,9 is ¥/216 = 6. The arithmetic mean of these
three numbers is 1—39 = 6%. Observe that the arithmetic mean is greater than the geometric mean in this
case. Is this true always?

It can be proved that “For any set of n non-negative numbers, the arithmetic mean is greater than
or equal to the geometric mean”. That is, if AM denotes the arithmetic mean and GM denotes the
geometric mean, then AM > GM.

Let us prove this inequality AN > G M for two non-negative numbers.

Theorem 5.2: If AM and GM denote the arithmetic mean and the geometric mean of two
nonnegative numbers, then AM > G M. The equality holds if and only if the two numbers are equal.

Proof. Let a and b be any two nonnegative numbers. Then

AM = ¢ and GM = Vab.

2

We have, (a + b)? — 4ab = (a — b)> > 0 Thus, (a + b)*> — 4ab > 0 which gives (a + b) > 2v/ab.
Hence “T“’ > \/%.
In other words, AM > GM.

Moreover, the equality holds if and only if (a+b)? —4ab = 0. This holds if and only if (a—b)? = 0
which holds if and only if @ = b. Thus AM = G'M if and only if a = b. |

Geometrical Proof for AM > GM

Let a and b be any two nonnegative real numbers. If at least one of them is zero, then GM is O
and hence we have nothing to prove. So let us assume that ¢ > 0 and b > 0. We draw a straight
line segment AB of length a + b and a semi-circle having AB as diameter. Let M be the midpoint
of AB. Then M is the center of the semi-circle drawn. Since M is the midpoint of AB, we have
AM = MB = “T“’ So the radius of the circle is “T“’ Let D be the point on AB so that AD = a;
then DB = b.

Figure 5.2
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Through D we draw the perpendicular to AB and let it to meet the semi-circle at C'. We draw straight
lines C'A, CB and C'M. Since M is the center C'M = radius = “T“’ Clearly M D = “T“’ — a. Using
the similar triangles AAC'D and AC'BD we have % = % and hence CD? = AD x BD = ab. So
C'D = v/ab. (Using Pythagoras theorem also we can prove that C'D = v/ab.) Since the length of any
half chord is less than or equal to the radius, we have C'D < C'M. In other words, \/@ < “TH’ This
means GM < AM.

The length of the half chord DC' is equal to the radius if and only if D = M. Thus equality

AM = GM holds if and only if a = b.

Result 5.1: If a1, as, as, ..., a, is an arithmetic progression, every term a; (k > 1) is the arithmetic
mean of its immediate predecessor a;_; and immediate successor a. 1.

Proof. Let ay,as,as, ..., a, be an arithmetic progression with initial term a and common difference
d. Then
ar=a+ (k—1d, ap1=a+(k—2)d and ar; = a+ kd.

Thus
-1+ a a+(k—2)d+a+kd 2a+ (2k—2)d
k—1 k+1: ( ) — ( ) :a+(k:—1)d:ak
2 2 2

Therefore, ay is the arithmetic mean of a;_; and aj 1. [ |
Result 5.2: If aj, as, as, . .., a, is a geometric progression, every term a; (k > 1) is the geometric
mean of its immediate predecessor a;_; and immediate successor ay. 1.

Proof. Letay,as,as,...,a, beageometric progression with initial term a and common ratio r. Then

ap = arkil, ap_1 = ar®*? and Qpa1 = ar®.
Thus
Vg1 Gpy1 = Vark=2ark = Va2r2k=2 = arF=! = g,
Therefore, a, is the geometric mean of a;_; and aj. 1. [ |

Example 5.14 Find seven numbers A, As, ..., A7 so that the sequence 4, Ay, Ay,..., A7, 7 is in
arithmetic progression and also 4 numbers 1, G9, G'3, G4 so that the sequence 12, G, G, G5, G4, %
is in geometric progression.

Solution:
Since a« = 4 and 4 + 8 = 7 we get d = g. So the required 7 numbers are
3
43 48 51 52, 51, 62, 62.
Since @ = 12 and ar® = 32

=3
1 3
6,3,11,3.

we get 7° = o> and hence r = 1. Thus the required 4 numbers are

Example 5.15 If the product of the 4™, 5" and 6" terms of a geometric progression is 4096 and if
the product of the 5™, 6" and 7*"-terms of it is 32768, find the sum of first 8 terms of the geometric
progression.

Solution:
Let a,ar,ar?, ... be the geometric series having the given properties. Since the 4/, 5" and 6™
terms are ar®, ar* and ar®, their product is a3r'2. Thus a3r'? = 4096. Similarly a®r'® = 32768.
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o 32768
Therefore —— = ———
eretore asri? 4096

a®r'? = 4096 we have o> = 1. Therefore a = 1.
a(l—r%) 1-28

The sum of the first 8 terms is = = 255.
1—7r 1—-2

. Hence 73 = 8. This implies that r = 2.

Harmonic Mean

The harmonic mean of a set of positive numbers is the reciprocal of the arithmetic mean of the
reciprocals of the set of numbers. That is, if Ay, ho, . . ., h,, are positive numbers, then their reciprocals

are ;- h%, ..+, 7 the arithmetic mean of the reciprocals is
Erdeord
n
and the reciprocal of this arithmetic mean, that is the harmonic mean of the numbers hq, ho, ..., h, is
n
S
Definition 5.5
The harmonic mean of a set {hy, ho, ..., h,} of positive numbers is defined as
n
i SR

In particular, the harmonic mean of two positive numbers a and b is +—— which is equal to %
a b

It can be proved that “For any set of n positive numbers, the gegmetric mean is greater than or
equal to the harmonic mean”. That is, GM > HM.
Let us prove this inequality GM > H M for two non-negative numbers.

Theorem 5.3: If GM and HM denote the geometric mean and the harmonic mean of two non-
negative numbers, then GM > H M. The equality holds if and only if the two numbers are equal.

Proof. Let a and b be any two positive numbers. Then

GM = +ab and HM = 2ab
a+b

GM — HM — ab— 22
a+b
Vab(a 4 b) — 2ab
a+b
Vab((a + b) — 2v/ab)
a+b
Vab(y/a - Vb
a-+b

> 0

Thus GM — HM > 0 and hence GM > HM. [ |
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We have already proved that AM > GM in theorem 5.2 and now we have GM > HM.
Combining these two, we have an important inequality AM > GM > HM.

Result 5.3: For any two positive numbers, the three means AM, GM and HM are in geometric
progression.

Proof. Let a and b be any two positive real numbers. Then

b 2ab
AM =20 G = Vab, and HM = =2
a+b
Now 5 9b
AM x HM = (&5 D)~ ab = (Vab)® = GM?.
2 a+b
Thatis, AM x HM = GM? and hence AM, GM and HM are in geometric progression. |

We note the following interesting results.

e [f b is the arithmetic mean of a and ¢, then a, b, ¢ is an arithmetic progression.
e If b is the geometric mean of a and ¢, then a, b, ¢ is a geometric progression.
e [f b is the harmonic mean of a and ¢, then a, b, c is a harmonic progression.

Q) If a vehicle travels at a speed of x kmph. covering certain distance and it returns the
same distance with a speed of y kmph., then the average speed of the vehicle in the
whole travel is the harmonic mean of the upward and downward speeds. Indeed, if d is
the distance, then time taken for upward journey is g and the time taken for downward
journey is g.

2d 2xy
a, d  z+y
r Yy

Thus average speed is

For example if a vehicle travels at a speed of 60 kmph. covering certain distance and it returns the
same distance with a speed of 40 kmph., then the average speed of the vehicle in the whole travel is

the harmonic mean of 60 and 40. That is % = 48 kmph speed.

Exercise - 5.2

1. Write the first 6 terms of the sequences whose n'* terms are given below and classify them
as arithmetic progression, geometric progression, arithmetico-geometric progression, harmonic
progression and none of them.

(n+1)(n+2)
n+3(n+4)

Gind (1) S w2 w2018 (i) 3

| .. n—2

2. Write the first 6 terms of the sequences whose n'" term a,, is given below.

. n+1 ifnisodd . ! itn =1
) an = { n if n is even (i) an =4 2 ffn =2
Up—1 + Ap—2 ifn>2
i) a :{ n ifnis1,2or3
" Ap_1 + Qo + a,—3 ifn >3
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. Write the n'” term of the following sequences.

(i) 2,2,4,4,6,6,... (D) 3, 2, 2,2 2 ..
(i) 3,2, 2, L 5 ... (v) 6,10, 4, 12,2, 14, 0,16, —2,...

4. The product of three increasing numbers in GP is 5832. If we add 6 to the second number and 9 to
the third number, then resulting numbers foEr)m an AP. Find the numbers in GP.

5. Write the n'" term of the sequence ) , ,... as a difference of two terms.

12227 22327 3242

6. If t;, is the k™" term of a G P, then show that t,,_y, t,,, t,+ also form a GP for any positive integer
k.

7. If a, b, c are in geometric progression, and if ar =bv = c* , then prove that z, y, z are in arithmetic
progression.

8. The AM of two numbers exceeds their GM by 10 and HM by 16. Find the numbers.

9. If the roots of the equation (¢ — 7)x* + (r — p)x + p — q¢ = 0 are equal, then show that p, ¢ and r

10.

are in AP.
If a, b, c are respectively the p™*, ¢*" and r*" terms of a GP, show that

(g—r)loga+ (r—p)logb+ (p — q)loge = 0.

5.5 Finite Series

Roughly speaking a series is the sum of terms of a sequence of numbers; a
finite series is the sum of terms of a finite sequence of numbers. If (a,,) is a
sequence of numbers, then the expression a; + as + - - - + a,, is called a finite

n
series. The expression a; + as + - -- + a, i1s denoted as Y. ax. Sometimes,

depending upon the problem under consideration and for simplicity a series
may be given as ag + a; + ag + - - - with first term as ay.

k=1

5.5.1 Sum of Arithmetic, Geometric and Arithmetico-Geometric Progressions

In the earlier classes we studied about the sum of a few terms, like sum of first n terms, of arithmetic
and geometric progressions. We now recall them.

Sum of Arithmetic and Geometric Progressions

e A series is said to be an arithmetic series if the terms of the series form an arithmetic sequence.

A series is said to be a geometric series if the terms of the series form a geometric sequence.

e The sum S, of the first n terms of the arithmetic sequence (a + (n — 1)d) is given by

S, = na + @d = %[2a+ (n — 1)d].

e The sum S, of the first n terms of the geometric sequence (ar™~!) is given by S, = a(l=r")
provided r # 1. If r = 1, then the sequence is nothing but the constant sequence a, a, a, . .. and
the sum of the first n terms is clearly na. Thus, if » # 1, then 1 + r + rP4 .4l = 1:":.

Sum of Arithmetico-Geometric Progressions

e A series is said to be an arithmetico-Geometric series if the terms of the series form an

arithmetico-Geometric sequence.

e The sum S, of the first n terms of the arithmetico-Geometric sequence ((a + (n — 1)d)r"!) is

given by

S, == (“1@; DO g Gl__—rz;)

forr # 1.
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Example 5.16 Find the sum up to n terms of the series: 1 + g + % + % +--
Solution:

Herea =1,d=5andr = 1.

sy

1—7r (1 —r)?
1 (1+5(n-1)E)" 1{(1-3)"
- CEE g (G2 0)
1— st s(peml )
- g + 7n—1(g)2

T —b5ntd | 5T 1)
716 77236

5.5.2 Telescopic Summation for Finite Series

Telescopic summation is a more general method used for summing a series either for finite or infinite
terms. This technique expresses sum of n terms of a given series just in two terms, usually first and
last term, by making the intermediate terms cancel each other. After canceling intermediate terms, we
bring the last term which is far away from the first term very close to the first term. So this process is
called “Telescopic Summation”.

Example 5.17 Find the sum of the first  terms of the series - " f f iy \[ sevi -

Solution:

Let t;, denote the k' term of the given series. Then t;, = If we are successful in writing

1
. . \/E+ k:+1 i . . .
the £ term as a difference of two expressions, then we can solve using this technique. We have

N 1 N VE—vVE+1 _VE—VE+T e
SR vErl (VA D(WE VAT k-t D) vk

Thus

tittat o+t =(V2- VD) +(V3-V2)+ - +(Vn+1l-Vn)=vn+1-1

Example 5.18 Find Z k(k—i—l)

Solution:

Let t;, denote the k" term of the given series. Then t;, = By using partial fraction we get

1
k(k+1)*
11 1
k(k+1) k k+1

Thus

)+ to + +t—11+11+11+
L n 2 2 3 3 4
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Exercise - 5.3

1. Find the sum of the first 20-terms of the arithmetic progression having the sum of first 10 terms as
52 and the sum of the first 15 terms as 77.
13 13+23 13+23+33

2. Find the sum up to the 17" term of the series — +
1 1+3 1+3+5
Compute the sum of first n terms of the following series:

bt

1. 8+ 88+ 888+ 8888+ --- ii. 64 66 + 666 + 6666 + - - -

Compute the sum of first n terms of 1+ (1 +4) + (1 +4+4%) + (1 +4+4> +43) +---

Find the general term and sum to n terms of the sequence 1, 3, 5,32, . ...

Find the value of n, if the sum to n terms of the series /3 + \/%’) + /243 + - -+ is 435V/3.

Show that the sum of (m + n)"" and (m — n)™ term of an AP. is equal to twice the m" term.

A man repays an amount of Rs.3250 by paying Rs.20 in the first month and then increases the

payment by Rs.15 per month. How long will it take him to clear the amount?

9. In arace, 20 balls are placed in a line at intervals of 4 meters, with the first ball 24 meters away
from the starting point. A contestant is required to bring the balls back to the starting place one at
a time. How far would the contestant run to bring back all balls?

10. The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in
the culture originally, how many bacteria will be present at the end of 2™ hour, 4t hour and n"
hour?

11. What will Rs.500 amounts to in 10 years after its deposit in a bank which pays annual interest rate
of 10% compounded annually?

12. In a certain town, a viral disease caused severe health hazards upon its people disturbing their

normal life. It was found that on each day, the virus which caused the disease spread in Geometric

Progression. The amount of infectious virus particle gets doubled each day, being 5 particles on

the first day. Find the day when the infectious virus particles just grow over 1,50,000 units?

© NN A

5.5.3 Some Special Finite Series

In this section we give some of the important formulas of summing up finitely many terms which
follows either an AP, GP, or any specific series.

1. Summation of first n natural numbers:

" 1
5 k:1+2+3+~-—+n=@.
k=1

[Treating this as an AP, one can find the sum.]
2. Summation of the squares of first n natural numbers:
o nn+1)2n+1)

SR =12422 432 4.4t = .
k=1 6

[Use the identity a® — b* = (a — b)(a® + ab + b*) and try to prove this result.]
3. Summation of the cubes of first n natural numbers:

QRS

5 k313+23+33+~-~+n3< 5

k=1

[Use the identity k* — (k — 1)* = (4k® — 6k* + 4k — 1) and try to prove this result.]

Note that the above three results were proved in the earlier classes.
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5.6 Infinite Sequences and Series

A finite sum of real numbers is well defined by the properties of real numbers, but in order to make
sense of an infinite series, we need to consider the concept of convergence. Consider the infinite sum:
$+ %+ £+ with each term positive. Can we assign a numerical value to the sum? While at first it
may seem difficult or impossible. We can certainly do something similar where we have one quantity
getting closer and closer to a fixed quantity.

Let us discuss an interesting problem. Let there be two plates A and B. Let a full cake be placed
on the plate A and let B as empty. Let us cut the cake in A into exactly two equal parts and place one
part on B leaving the other part in A. Let us cut the remaining part of the cake in A into exactly two
equal parts and place one part on B leaving the other part in A. Let us again cut the remaining part of
the cake in A into exactly two equal parts and place one part on B leaving the other part in A. If we
go on doing this what will happen? What will be the amount of cake “finally” in A and in B? Let us
list the stage by stage status:

Stage Plate A Plate B
0 1 0
1 1 1
1 121
2 i st
1 1 1 1
3 8 stits
1 1 1 1 1
4 16 stitstig
1 1 1 1 1 1
0 33 statstitas
o o Figure 5.3
1 1 1 1 1 1
n 3 T mTtmTa Tt tan

Intuitively we feel that “finally” nothing will remain in plate A and the full cake will be in plate
B. In other words, the cake available in A is 0 and the cake available in B is 1. That is, intuitively we
feel that

“goes” to 0 and

11+1 1+1+1 1+1+1 1
272 42 4 82 4 8 16’
“goes” to 1 or equivalently
1+1—|—1+1+ is 1
statst s 1.

In this section let us learn the sense in which the words “finally” and “goes” are used and also let us
learn the addition of infinitely many numbers.
S 1171 1 1
) Wle mtulmvel)i feel that 1, 5, 7, 81167 330
16° 1007 1000° T0000° 100000 - - - IS0 “goes” to 0. _ . _
If (a,) is a sequence and a is a number so that for any given small positive number, there is a

stage after which the distance between a,, and a is smaller than that positive number, then we may say
that a,, goes to a as n goes to infinity. In technical terms we may say that a,, fends to a as n tends to
infinity. In other words, in the limiting case a,, becomes a or the limit of a,, is a as n tends to co. We

also say that the sequence (a,,) converges to a. If (a,,) converges to a, then we write lim a,, = a.
n—oo

. “goes” to 0. Similarly we feel that the sequence 1,
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At the same time we cannot say that the sequence
17 07 ]'7 07 ]'7 07 ]‘7 07 17 07 st

goes to some number. In other words, this sequence do not converge to any limit. So a sequence may
not have a limit. But we can prove that a sequence cannot converge to more than one limit; that is, if
a sequence converges to a limit, then it is unique.

5.6.1 Fibonacci Sequence

The Fibonacci sequence is a sequence of numbers where a number other than first
two terms, is found by adding up the two numbers before it. Starting with 1, the
sequence goes 1, 1, 2, 3, 5, 8, 13, 21, 34, and so forth. Written as a rule, the
expression is &, = T, 1 + Tp_o,n > 3 withzy = 1,290 =1

Named after Fibonacci, also known as Leonardo of Pisa or Leonardo Pisano,
Fibonacci numbers were first introduced in the book Liber abaci in 1202. The son
of a Pisan merchant, Fibonacci traveled widely and traded extensively. Mathematics
was incredibly important to those in the trading industry, and his passion for
numbers was cultivated in his youth.

Knowledge of numbers is said to have first originated in the Hindu-Arabic arithmetic system,
which Fibonacci studied while growing up in North Africa. Prior to the publication of Liber abaci, the
Latin-speaking world had yet to be introduced to the decimal number system. He wrote many books
about geometry, commercial arithmetic and irrational numbers. He also helped in the development of
the concept of zero.

6 7 8 9 10 11 12 13 14
8§ 13 21 34 55 89 144 233 377

For example, The 8 term is sum of 6/ term and 7*" term. Thus, s = 8 + 13 = 21.

n =123 45
2, = 1 12 35

@® ®OE®E OO
OROROITHCRORONONO)

Figure 5.5

Figure 5.4

R There is an interesting pattern in the Fibonacci sequence.

Observe that

(i) every third number is a multiple of 3'¢ term (t3 = 2).
(ii) every fourth number is a multiple of 4'* term (t, = 3).
(iii) every fifth number is a multiple of 5" term (¢5 = 5).
(iv) So, every n'® number is a multiple of n'* term.
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Infinite Series

If (a,) is an infinite sequence of numbers, then the formal expression a; +as+- - - is called an infinite

o0
series and is denoted as ¥ ay.
k=1
In the beginning of the section we have seen the infinite series

S
2747816

and intuitively felt that “izs sum” is 1 (in the cake problem). Actually in the cake problem, the stage
by stage availability of the cake in the plate B is given in the following sequence.

1+1+1 1+1+1+1
"2 4 82 4 8 16

A~ =

1 1+ 1 n 1 P 1
2 4 8 16 2n
which is equal to 27;;1. If s,, denote this sum, then lim s,, = 1. This is one of the reasons for us to
n—oo
feel that th
eel that the sum 1+1+1+1+ .
2178716 e

Motivated by this we may define the sum of infinitely many numbers. Let (a,,) be a sequence of
real numbers and let s, = a; + as + as + - - - + a,,. If the sequence (s,,) converges to a limit s, then it
is meaningful to say that the sequence (a,,) is “summable” and the sum is s. In this case, we write

CL1+CL2+CL3+"':8

It is customary to say that the series converges to s.

( Definition 5.6 )

o0
Let ¥ a, be a series of real numbers and let
n=1

Sp=a1+ay+as+---+a,,n N

The sequence (s,) is called the partial sum sequence of %}O a,. If (s,) converges and if
n=1

lim s, = s, then the series is said to be a convergent series and s is called the sum of the
n—oo

\series. j

o0 o0
We write 3. a, = s. Let us see some examples. The series Y. (—1)""! does not converge because
n=1

n=1
the partial sum sequence 1,0,1,0,1,0,... does not converge.

& We cannot apply algebraic rules meant for finite series to an infinite series blindly.
Consider OEo(—l l=1-14+1-1+---1fS=1—-1+1—1+--- then one
n=1

(0 or 1 or %accordingtoS: 1-1+0—=1)+--,

)
may argue that S
1 1+)+-- orl=S=1—-(+1—-14+1—-1+---=0Y9)

S=1+(-1+1)+
respectively.
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The series E " converges if v = 3 whereas it does not converge if x = 2. This shows that series like
n=0

Z a,x™ converges for some values of = and does not converge for some values of x. The problem of

n=0

finding the values of x for which sequences of this form converges is beyond the scope of this book.
However in the rest of the chapter we list some series with the appropriate values of x for which the
series converges and the sum of the series whenever it converges.

5.6.2 Infinite Geometric Series

The series 2x" is called a geometric series or geometric progression. Let us start with the series:
Z]:B x#llfsn—xo+x1+x2+ —|—xn,then5n:11
that s, tends to — if [z] < 1.

" tends to 0 if |z| < 1, we say

° 2 x™ converges for all real number x with |x| < 1 and the sum is 1% That is, for all real
n=0
numbers z satisfying |z| < 1,

=l+a+2+2°4---

1l—x
° %}O (—=1)"2™ converges for all real number = with |z| < 1 and the sum is ——. That is, for all real
n=0
numbers z satisfying |z| < 1,
1
=l-a+a2* -2+ -
1+z

o 3 (295) converges for all real number = with |z| < % and the sum is . That is, for real
o

numbers z satisfying |z| < 3,

=1+2x+ 42 +82° + -+

1 -2z
LIDY "fl—, converges for all real number x and the sum is e®. That is,
—0

PR 2 2 2t
METRECTREETI T
for all real numbers .
e X (—1)"z converges only for z = 0.
n=0

Let us discuss some special series. By assuming the convergence of those series let us solve some
problems.

5.6.3 Infinite Arithmetico-Geometric Series
e The sum of the arithmetico-Geometric series X((a + (n — 1)d))r™~! is given by
a dr

S = lim S, =
vl 1—r+(1—r)2

for -1 <r<1.
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Example 5.19 Find the sum: 1 _|_ + L _|_ 11205 1.

Solution:
Herea =1,d =3andr = 1.

5.6.4 Telescopic Summation for Infinite Series

We discussed about summing terms of a finite sequence using telescopic summation technique in
Section 5.5.2. The same applies for infinite series also.

Example 5.20 Find 2

2+5n+6
Solution:
Let a,, denote the n'" term of the given series. Then a,, = m. By using partial fraction, we get
1 1
ap = — :
n+2 n+3

Let s,, denote the sum of first n terms of the given series. Then

—+++_11+11+11++1 1_11
Sp = Q1109 apn = 3 4 4 5 5 6 n-+2 n-+3 _3 7’L+3

But as n tends to 1nﬁn1ty, —- tends to zero and hence 3 — 5 tends to <. In other words s,, tends

to— Thus 2 - l.

n2—|—5n+6 3

5.6.5 Binomial Series

In the discussion on geometric series we have seen that

1
=l4+z+2°4+--, ——=1—2+2°—-- and =142z +42%+---
1—=z 1+2 1—2x
for some suitable values of x. But the expressions ﬁ, > and ;=5 can be written as (1 — x)7,

(1+2) ! and (1 —2x)~!. This suggests us a possibility of having negatlve exponents, that is negative
powers, for (1 4+ x), (1 — ) and so on. Yes. This is possible. We can have any power, positive or
negative, integer or rational. We can even have irrational exponent for (1 + z). We already proved
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Binomial theorem (Theorem 5.1) for positive integral exponent (integral exponent means integer
power). Now let us state the Binomial theorem for rational power.

Binomial Theorem for Rational Exponent

Theorem 5.4 (Binomial Theorem for Rational Exponent): For any rational number n,

—1 —1)(n—2
(I+z)"=14nx+ —n(nQ' )$2 + n(n 3)‘(” )xg +
for all real numbers x satisfying |z| < 1.

As the proof involves higher mathematical concepts, let us assume the theorem without proof and
see some particular cases and solve some problems. In the theorem

1. By taking —z in the place of =, we get

(l—m)”:1—nx+%x2—n(n_g)!(n_2>x3+--- (lz] < 1)

2. By taking —n in the place of n, we get

(1+2)" =1+ (—n)x+ (_n)(;n P ) _3!1>(_n LN

Hence

+1 +1)(n+2
(1+x)":1—m:+%x2—n(n ?))'(n )x3+--- (lz] < 1)

3. by taking —z and —n in the places of x and n, we get

1 1 2
(1—x)n=1+mc+%x2+n(n+3)'(n+ )$3+--- (Jz| < 1)

Even though we have explicitly mentioned that n is a rational number in the theorem, some of us may

hesitate to use 7 in place of a general rational number. So we give the theorem using the representation

I—)(q # 0) for a rational number.
q

EE—-1) EE-1)(t-2)
2 p q(q 2, 4\g q 3
(1+CE)‘1 = 1+§ZIJ+TIL’ + 31 S S
_ p  pp—q) o plp—q(p—2q)
— 1—|—5;U—|— 221 x° + 3] o4 (Jz| < 1)
e p  pp—q) o plp—a)(p—29)
=)y = =Gt T T o (<D

Though the theorem gives a formula to compute (14 z)", to solve numerical problems quickly we
must remember and able to write certain expansions directly. Observation of the coefficient in each of
such expansions will be very helpful in solving problems. Let us list some of them: (Try yourself!).
L. A+a)t'=1—-o+2*—a3+---

2. (1l—a)t=14z+a2?+2°+---
3. (1 —2)2 =142z + 322 + 423 + 52?4 62° + - - -
4. (1+2)2=1-2x+32? — 42> + 52 — 62° + - - -

All the above expansions are valid only when |z| < 1.
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Example 5.21 Expand (1 + z)3 up to four terms for |z| < 1.

Solution:
Heren:%
nn—1) _ 3¢-1)
21 n 2!
_ &)
2
_ —1
9
nn-D(n-2 _ 3G-DG-2)
3! a 3!
_ 3HEY
6
4
8l
Th
us Qs )% 1+2 1 N 4 5
)3 = =08 = ={¢ @
3 9 81

Example 5.22 Expand > in powers of x. Find a condition on x for which the expansion is

(1+ 3x)
valid.

Solution:

If we take 3x = y, then ) )

(1+32)2  (1+y)?

Now

1
At can be expanded using binomial theorem in powers of y. The expansion is valid only
Yy
for values of y satisfying |y| < 1. Replacing y by 3z we can get an expansion of m The
x
expansion is valid only for values of z satisfying |3z| < 1; that is the expansion is valid only for
values of z satisfying || < 3.

1 —
224+1),. o 224+1)(24+2), .5
= 1—2(3x)+T(3x) — Al (3z)
22+ 1)(2+2)(24+3
22+ )R+2C+8)
4!
Hence, gy = 1 — 62 + 272% — 1082 + 4052 — -+, |z] < 3.
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1
Example 5.23 Expand m in powers of z. Find a condition on x for which the expansion is
x
valid.
Solution: ;
(Clearly we have to use the expansion of (1 + z)~2. So, we have to write (3 + 2z) as 3 (1 + ?:c)
and proceed.)
IR 1
3+21)2 22\
(3+20) 32 <1 + —”3)
3
1 22\
= —(14+=
9 ( u 3)
1 _9 &
= 5(1+y) where — =y
1
= 5(1—2y—|—3y2 4y® + 5y* )iflyl <1
1 2 22\ 22\ 22\ " 2
= —(1—2(Z)#3(Z) —4(ZZ) +5(Z=) - )12 <1
9( (3)+ (3) (3) " (3) )"3'
1 4 4 32 80
_ (12, 22 223 S a4
9( 373 T TE” )
1 1 4 4 32 80 3
Thus, ———— = — — — 2 T3 < Z
BT 9 2w Tt Tt T’ l2l <3
The expansion is valid if |y| < 1. So, the expansion is valid if |z| < 2.

We can find square root, cube root and other roots of any positive number by using binomial
theorem. Let us see one such problem.

Example 5.24 Find v/65.

Solution:
We know that for |z| < 1,

— 1 —1)(n—2
(1+:13)n=1+m:—|-—n(n2' )x2+n(n 3)‘(” >x3—|—
3 . 1
65 = 653
(64 +1)3
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@ The binomial theorem is true for all real numbers n. For example, when n = V2, we
have
2(v/2 —1 2(v2 - 1)(vV/2 -2
(1+2)V?=1+2z+ \/_(\/2: Ju 4 V2(V2 3,)(\/_ Vot 4o < 1.

5.6.6 Exponential Series

s n . . . . .
The series > %+ is called an exponential series. It can be proved that this series converges for all
n=0 "

values of z. -
n
For any real number z, 3 77 = e” where
n=0 "

_1 1 1 1 1
e = +ﬂ+5+§+z+“'

We have
. R R B
ce Tttt G-

for all values of z. By taking —x in place of x in (5.1) we get

X 1’2 1'3 1}4

e B T (5.2)

In particular,

P TR TR T T
From (5.1) and (5.2) we get
i L P i SN
2 204 ¢ 2 11 31 5l
In particular we have
€—|—6_1_1+1+1+1+ and6_6_1—1+1+1+
2 2l 4l 6l 2 1 3l 5l

By taking 2z in place of x in (5.1) we get

2z (22)*  (2z)? N (2z)* N

2x __ =
S TR TR Al
On simplification we see that
- 2 4x?  8z3 16zt
e =14 = =
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5.6.7 Logarithmic Series

The series 2 ( )”“m: is called a logarithmic series. This series converges for all values of x

satisfying \x! < 1. This series converges when z = 1 also.
For all values of z satisfying |z| < 1, the sum of the series is log(1 + x). Thus

T
log(l4+z) =z — 5} + 37 + - - - for all values of x satisfying |z| < 1.
By taking —z in place of x we get
T
log(l—2) = —x — T g T for all values of x satisfying |z| < 1.

Now log (1££) = log(1 + x) — log(1 — ). Using this we get
| 1+ 2|z + 3 N x° N
O f— x —_— —_— DR
S\1—= 3 5

Suppose we want to write log(1+2x) in a series, then we can replace 2z by y and use the expansion

> 3 4
Y ) Y
log(1 gL 4L
og(l+y)=y—S+5 -+
for all values of y satisfying |y| < 1. Butif |y| < 1, then |2z| < 1 and hence |z| < 1. Soif |z| < 3,
e | 2o _ (22
T X x
log(1 + 2x) = 2z — — .
og(l+2x) =2z 5 + 5 1 +
Thus log(1 + 2z) = 2z — % + % - % + -+ for all values of = satisfying |z| < 1.

@ Exercise - 5.4

1. Expand the following in ascending powers of = and find the condition on x for which the binomial
expansion is valid.

1
(1) Cpps (i1) m (i) (5+ x2)% (iv) (z+ 2)_%
2. Find v/1001 approximately (two decimal places).
3. Prove that v/23 + 6 — v/23 + 3 is approximately equal to % when z is sufficiently large.
4. Prove that 4 / = is approximately equal to 1 — = + % ® when z is very small.

5. Write the first 6 terms of the exponential series (i) € (i) e 2% (iii) e2®

6. Write the first 4 terms of the logarithmic series (i) log(1 + 4z) (ii) log(1 — 2x) (iii) log (153%)

1-3z
(iv) log (i éi) Find the intervals on which the expansions are valid.

7. Ify:x—l—352—2—|—%—3+§+--~,thenshowthatx:y—g—?—#%—?—i—?—k---.

8. If p — q is small compared to either p or ¢, then show that p o~ % Hence find ¢ }6

9. Find the coefficient of 2* in the expansion of 3‘;++”

10. Find the value of 3. — (97},1 + 925,1).
n=1
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Exercise - 5.5

Choose the correct or the most suitable answer.
1. Thevalueof 2+4+6+---+ 2nis

(1 g @ 5 (3) @ n(n+1)
2. The coefficient of 2% in (2 + 22)'% is
(1) 1°Cq 2) 26 (3) 10C42° 4) 10C4 2%,
3. The coefficient of 2%y'? in the expansion of (2x + 3y)* is
(1) 0 (2) 28312 (3) 28312421238 (4) 20Cg2831%
4. If "Cyy > "C, for all possible r, then a value of n is
(1) 10 2) 21 3) 19 4 20.
5. If a is the arithmetic mean and ¢ is the geometric mean of two numbers, then
(1) a<yg 2) azyg B) a=gyg @) a>g.
6. If (1 + :U2)2 (1+2)" =ap+ a1z + ax® + -+ - + 2" and if ag, a1, a, are in AP, then n is
(1 1 2) 5 3) 2 4) 4.
7. If a,8,bare in AP, a, 4, b are in GP, and if a, x, b are in HP then z is
(1) 2 2) 1 3) 4 4) 1e6.
8. The sequence \/%, \/g}r ol \/§+12 5+ - forman
(1) AP 2) GP (3) HP 4) AGP.
9. The HM of two positive numbers whose AM and GM are 16, 8 respectively is
(1) 10 2) 6 3) 5 4 4.

10. If S,, denotes the sum of n terms of an AP whose common difference is d, the value of
Sn — 251”,1 -+ SH,Q is

(1) d ) 2d (3) 4d 4 d2.
11. The remainder when 38'° is divided by 13 is
1y 12 @) 1 3) 11 4) 5.

12. The n*" term of the sequence 1,2,4,7,11,--- is
() n3+3n2+2n (2) n®—3n’+3n (3) “othed2) (4) n=nt2,

13. The sum up to n terms of the series \/Ti\/ﬁ + ﬂi\/g + ﬁiﬁ .- is
() V2n+1 (2) vl 3) V2n+1-1 (4 2=l

14. The n'" term of the sequence 1,3, 12 ... jg

1) 2"—n—1 (@2 1-27 B) 2"4n—1 (4 271,
15. The sum up to n terms of the series V24 V8 + VIS + 32+ -+ is

(1) @ 2n(n+1) @) " @ 1.
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16. Thevalueoftheseries%—i—%—i—%—l—i—g—l—--- is

() 14 2 7 3) 4 4) 6.
17. The sum of an infinite GP is 18. If the first term is 6, the common ratio is
(D % 2) % 3) % 4) %-
18. The coefficient of z° in the series e~ 2% is
(1 2 @ 3 3 4 .
19. The value of 5 + 5 + g + -+ is
e e+1 2 e—1)2 e2
1) £t 2 3) - @ <L
20. The value of 1 — 3 (%) + 3 (%)2 -1 (%)3 +e s
(1) log (3) (2) 3log(3) (3) $log(3) @) 3log (3).
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ICT CORNER-5(a)

Expected Outcome =

e -] — Y]
« GeaGetec ave|
GMAMG.M ond Hk

av= M et s e v = 3

e e
e T

Step-1

Open the Browser and type the URL Link given below (or) Scan the QR Code..

Step-2
Sequences and Series workbook will open. Several worksheets are given in this workbook.
Select a worksheet “Relation between Q.M,A.M,G.M and HM”

Step-3
You have All the Mean formula working with varying a and b. Move the point named
“Move” and see that Mean values changes corresponding to a and b.

Binomial Theorem, Sequences and Series 234



www.thtextbooks.in

.Step-1

Step-2

I o oyl I- -3 e *a.
— « GeoGebro ¥ A w5

s vences and Series
Saquences and Sares

Step-3
.(-v T; -:-.W-wr LS WAW.GEOGRRONG M Frr s IR D #materia ax & @ l
¢ GenGebra T Qo< iy

K Relation between Q.M,A.M,G.M and H.M

a2 1 12
anz\l a* + b

a=973 ; b=627

Move the point | Check the values and justify the result]

a+b

2ab

=AM a+b

>GM = +Vab> HM =
8.18 > 8 > 7.81 > 7.62

P 0T 16T _

H.18

= Vab = VB.7T3+ 6.27 = 7.81

_ 2(9.73+6.27)

(O73+62r = 9

Now is the time for you to find out, Why the lines are named as AM, QM, GM and HM.
Also try other worksheets to make it clear in your lesson concepts.

*Pictures are only indicatives.

Browse in the link Sequence and Series:

https://ggbm.at/Pmz2QfWDor

Expected Outcome =

Scan the QR Code.

ICT CORNER-5(b)

[ v Pt Teange [ o Pt Marmtar s

[Fvesc { ] ¥ F.

¥ Ee 9y
I 9 g et R N )
' KB R CE A

............................ 1P 8 B . D P A NS 8]
e Py s oW omow s v 1
—_—— . o
(11 ]
—_—— ’
‘.‘
. y .
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Step-1

Open the Browser and type the URL Link given below (or) Scan the QR Code.
GeoGebra worksheet “PASCALS TRIANGLE” will appear. You can see pascal triangle
arrangements. There are check boxes “View Pascal Triangle”, “View Pascal’s Numbers”
and “View Combination”

Step-2

Click on “View Pascal’s Numbers” and move the sliders “n” and “r”. The red colour
point moves over the numbers. Leave on any number and click “View Calculation” to see
combinatorial working. Now compare the pascal numbers with the calculation.

.Step-1

L 3.PASCAL'S TRIANGLE

|\iew Pascal Triangle [ | View Pascal Numbers

Step-2
1
1 1
[]view Pascal Triangle (/] view Pascat Numbers A ! 2 L 1
== == 3 3
= ] 4
| view Combination 1 ¢ 1
1 5 10 10 5 1
1 & B W ONEE Y
R N A i o
1 B 2 s g P 8 1
: | 2 36 e 126 126 84 36 -] 1

C s e e T A T R L T e A e
1 55 165 330 462 452 330 165 55 19 1

- - - b - - - - - - . - -

*Pictures are only indicatives.

Browse in the link Sequence and Series:
https://ggbm.at/QNga4HQdor Scan the QR Code.
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Two Dimensional

Chapter [3 Analytical Geometry

“My powers are ordinary. Only my application brings me success .

Sir Isaac Newton

6.1 Introduction

Francois viete(1540-1603) introduced the first systematic algebraic
notation and contributed to the theory of equations.Two French
mathematicians-philosophers René Descartes and Pierre de Fermat
independently founded analytical geometry in the-1630s by adapting
Francois viete’s algebra to the study of geometric loci. Descartes
established analytical geometry as“a way of visualizing algebraic
formulas” and developed the coordinate system as “a device to locate
points on a plane”. His main achievement was to bridge the gap between
algebra and geometry. With regard to algebra, he explained in detail that _
how algebraic equations can be expressed and explained through the René Descartcl
use of geometrical shapes. Analytical geometry is a great invention of 15961650 A.D
Descartes and Fermat. Cartesian geometry, the alternative term used for
analytical geometry is named after him.

From the17th century onwards, mathematics is being developed in two directions: pure and applied
mathematics. One of the first areas of applied mathematic studied in the 17th century was the motion
of an object in a straight line. The straight line graphs can be used in the fields of study as diverse as
business, economics, social sciences, physics, and medicine. The problem of the shortest line plays a
chief and historically important role in the foundations of geometry.

Given a real-world problem, our first task is to formulate the problem using the language of
mathematics. Many techniques are used in the construction of mathematical models. Let us see
how linear equations (models) can be constructed from a given set of information and solved using
appropriate mathematical techniques. Consider some of the real-world, simple problems as illustrated
below:

Real life situation 6.1: When a student walks from his house, at an average speed of 6 kmph, reaches
his school by ten minutes before school starts. When his average speed is 4 kmph, he reaches his
school five minutes late. If he starts to walk to school every day at 8.00 A.M, then how to find (i) the
distance between house and the school (ii) the minimum average speed to reach the school on time
and time taken to reach the school (iii) the time at which the school starts (iv) the pair of straight lines
of his path of walk (Combined equation of two straight lines).

Real life situation 6.2: Suppose the Government has decided to erect a new Electrical Power Trans-
mission Substation to provide better power supply to two villages namely A and B. The substation has
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to be on the line /. The distances of villages A and
B from the foot of the perpendiculars P and @)
on the line [ are 3km and 5 km respectively and
the distance between P and () is 6 km. How to
calculate the smallest length of cable required to
connect the two villages (or the roads that connect
the villages as well as the power station) from the
power station and to find the equations of the cable Figure 6.1
lines (or roads) that connect the power station to

two villages.

Real life situation 6.3:

o Consider a hollow cylindrical vessel, with circumference 24 cm and height 10
cm. An ant is located on the outside of vessel 4 cm from the bottom. There is a
drop of honey at the diagrammatically opposite inside of the vessel, 3 cm from
the top. What is the shortest distance the ant would need to crawl to get the

% honey? What is the equation of the path traced out by the ant. Here is a picture
that illustrates the position of the ant and the honey.
Figure 6.2

Real life situation 6.4: The quantity demanded of a certain type of Compact Disk is 22,000 units
when a unit price is X 8. The customer will not buy the disk, at a unit price of ¥ 30 or higher. On
the other side the manufacturer will not market any disk if the price is ¥ 6 or lower. However, if
the price is X 14 the manufacturer can supply 24,000 units. Assume that the quantity demanded and
quantity supplied are linearly proportional to the price. How to find (i) the demand equation (ii)
supply equation (iii) the market equilibrium quantity and price. (iv) The quantity of demand and
supply when the price is ¥ 10.

The equation of the straight line for each of the problems stated above, not only solves the specific
case of solutions but also helps us get many information through it. Later, in this chapter, let us try
to solve these types of problems by using the concepts of straight lines. In order to understand the
straight line, we need to get acquainted with some of its basic concepts. Let us discuss those in detail

(Learning Objective )

On completion of this chapter, the students expected to know

e the equation of a line in different forms

e whether two given lines are parallel or perpendicular;

o the distance of a given point from a given line and between two parallel lines,

the family of straight lines for a given condition

\_° the equation of pair of straight lines, angle between them and angle bisectors )

6.2 Locus of a point

Definition 6.1

A point is an exact position or location on a plane surface.
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It is important to understand that a point is not a thing, but a place. We indicate the position of a point
by placing a dot. In plane analytical geometry, points are defined as ordered pairs of real numbers,
say, (z,y) with reference to the coordinate system.

Generally, a horizontal line is called the z-axis; and the line vertical to the z-axis is called the
y-axis. Intersection of these two axes is called the origin. Any point P in the plane can be located by
a unique ordered pair of numbers(z, y) where x gives the distance between the point P and the y-axis
and y denote the distance between the point P and the x-axis. Note that if x is negative it lies left of
y — axis, similarly if y is negative it lies below the x-axis. In applications, often letters other than x
and y are used, and different scales are chosen in the horizontal and vertical directions.

Definition 6.2

The path traced out by a moving point under certain conditions is called the locus of that point.
Alternatively, when a point moves in accordance with a geometrical law, its path is called locus.
The plural of locus is loci.

The following illustrations shows some cases of loci and its different uses.

Illustration 6.1: In cricket, when a ball is bowled by a bowler, the path traced out by the ball is the
locus of the ball. Whenever there is dispute between batsmen and the fielders for leg before wicket
(LBW) decisions, the locus of the ball —

solves the crises, raised by the players Image courtesy of
ESPNcric info

for review, through the third umpire. The
likely path of the ball can be projected
forward, through the batsman’s legs, to
see whether it would have hit the stumps
or not. Consultation of the third umpire,
for conventional slow motion or Hawk-
Eye, the probable decision will be taken.
This method is currently sanctioned in
international cricket.

https://www.hawkeyeinnovations.com/sports

Figure 6.3

Illustration 6.2: Suppose P be a point on the rim (circumference) of a circular wheel. When the

circle is rolling without slipping along a straight line, the locus of the point P on the rim is shown in

figure. The path traced out by the point P is known as cycloid. (Try yourself by taking a point inside

the circle. Find the names of the curve from the web site: www.mathworld.wolfram.com
https://www.geogebra.org/b/bd2 ADu2l

P P

Figure 6.4
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Illustration 6.3: A missile is launched from the army ship to attack and another from the land to
intercept it. The loci of the missiles are shown in figure.

Locus of missiles play a vital role in

many wars. During the Gulf War (2

Augl1990-28 Feb 1991), Iraq attacked

; Israeli cities with Scud missiles. To

B P i defend from Scud attack, Israel used

e : D Patriot missiles to shoot down enemy

t \  meroemanion missiles. To launch a satellite or space

o BEE shuttle successfully, the determination

of path plays an crucial role in space
research.

Locus of intercepting missiles

Figure 6.5

An equation in the two variables x and y will ordinarily be satisfied by infinitely many pair of
real value of x and y. Every such pair is called a real solution of the equation. Each real solution of
the equation will have its graph. The collection of all these graphs is called the locus of the given
equation.

The following table shows some important loci in mathematics

A moving point P under the given condition Graph Name of the path
A point P moves such that it is equidistant from Perpendicular bisector
two fixed points A and B % of the line segment AB
- A: é o
Figure 6.6
A point P moves such that it is equidistant from Angle bisector of the
two fixed lines ox and oy y ’,.I; angleZxoy
Figure 6.7
A point P moves equidistant from a fixed point O Circle
S
o
Figure 6.8

Now let us discuss the ways of finding the locus of the points. The equation of the locus is the
relation that exists between the coordinates of all the points strictly lying on the path.

Procedure for finding the equation of the locus of a point

(i) If we are finding the equation of the locus of a point P, assign coordinates, say (h, k) to P
(i) Express the given conditions as equations in terms of the known quantities and unknown
parameters.
(iii) Eliminate the parameters, so that the resulting equation contains only A, k£ and known quantities.
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(iv) Replace h by x, and k by vy, in the resulting equation. The resulting equation is the equation of
the locus of point P.

Example 6.1 Find the locus of a point which moves such that its distance from the x-axis is equal
to the distance from the y-axis.

Solution:
Let P (h, k) be a point on the locus. yA
Let A and B be the foot of the perpendiculars drawn oY) S
from the point P on the x-axis and the y-axis respec- + P(h, k)
tively.
Therefore P is (OA,OB) = (BP, AP) = (h, k) //+ :
Given that AP = BP AN

== k = h/ h ',O f A XV
replacing h and £ by substituting h =z and k =y v
The locus of P is, y = x, is a line passing through the Figure 6.9

origin

Example 6.2 Find the path traced out by the point (ct, g) , here ¢ # 0 is the parameter and c is a
constant

Solution: ‘
Let P (h, k)be a point on the locus. From the given information, we have h = ¢t and k = 7

To eliminate ¢, taking product of these two equations
(h) (k) = (ct) (g) = hk=¢

Therefore, the required locus is zy = ¢?

Example 6.3 Find the locus of a point P moves such that its distances from two fixed points
A(1,0) and B (5,0), are always equal.

Solution:
Given that A (1,0) and B (5,0) y g
Let P (h, k) be any point on the required path. ,'?\P(h' Y
From the information we have AP = BP 2t
That is i 9
V=12 + (k=07 = J(h—52+ (k-0 =h = 3 A
e A, 0) B(5,0) X
Therefore the locus of P is x = 3, which is a straight
line parallel to the y-axis. Figure 6.10
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Example 6.4 If 0 is a parameter, find the equation of the locus of a moving point, whose coordinates
are (asec, btan@).

Solution:
Let P (h, k) be any point on the required path. From the given information we have
h = asecfand k = btan6

= :seCQand%:tane

a

To eliminate the parameter ¢, squaring and subtracting, we get

(2)-(3) - mir-or
B~y -

Therefore the locus of the given point is

2 2
x
R
a b?
https://www.geogebra.org/geometry
D{) Whenever the parameters are in trigonometric form, try to use trigonometric identities

to eliminate 6

sin® 0 + cos?0 = 1, sec?f — tan? @ = 1, cosec’d — cot?f = 1.

Example 6.5 A straight rod of the length 6 units, slides with its ends A and B always on the x and
y axes respectively. If O is the origin, then find the locus of the centroid of AOAB .
Solution:

Let the coordinates of the points O, A and B
are(0,0), (a,0) and (0, b) respectively.

A
Observed that the points A and B are moving points. B
Let(h, k) be a centroid of AOAB. /1
Centroid of AOAB is B s )
0+a+0 0+0+b < ——
+a+ , +0+0) _ (h, ). .
3 3 e
) : -
—=h = a=3h - =k = b=3k
3 @z 3
From right AOAB, OA?+ OB? = AB? v
Figure 6.11

(3h)?2+(3k)?=(6)? = h+k =4

Locus of (h, k) is a circle, 2% + y? = 4.

Two Dimensional Analytical Geometry 242



10.

www.thtextbooks.in

Example 6.6 If 0 is a parameter, find the equation of the locus of a moving point, whose coordinates
are (a(0 —sinf), a(l — cosb)).

Solution:
Let P (h, k) be any point on the required 5 b
path. From the given information we have mm
h = a(f —sinf) (6.1) P P
k = a(1— cosf) (6.2) Figure 6.12
Let us find the value of 6 and sin # from equation (6.2)
k = a(l — cos0)
—k —k V2ak — k?
cosf=2"" = 0 =cos ! <a_) and sing = Y248 T8
a a
a—k

a

)—m

Substituting above values in (6.1) we get h = a cos™! (
The locus of (h, k) is

T = acos ' (U) —\/2ay — y? (6.3)
a

https://www.geogebra.org/b/bd2 ADu2l#material/zCKMj8kE

[Q Though, the parametric form given above is converted to Cartesian form, in some cases

the parametric form may be more useful to work with than the cartesian form.

Exercise - 6.1

. Find the locus of P, if for all values of «, the co-ordinates of a moving point P is

(1) (9cosa, 9sina) (it) (9cosa, 6sina).

. Find the locus of a point P that moves at a constant distant of (i) two units from the z-axis (ii)

three units from the y-axis.

If 6 is a parameter, find the equation of the locus of a moving point, whose coordinates are
r=acos®h, y=asin®6.

Find the value of k and b, if the points P(—3,1) and Q(2,b) lie on the locus of 2? — bz + ky = 0.

. A straight rod of length 8 units slides with its ends A and B always on the x and y axes respectively.

Find the locus of the mid point of the line segmentAB

Find the equation of the locus of a point such that the sum of the squares of the distance from the
points (3,5), (1, —1) is equal to 20

Find the equation of the locus of the point P such that the line segment AB, joining the points
A(1,—6) and B(4, —2), subtends a right angle at P.

. If O is origin and R is a variable point on 3> = 4, then find the equation of the locus of the

mid-point of the line segment OR.
b
The coordinates of a moving point P are (g(cosece +sinf) , §(cose09 — sin 9)) , where 0 is a

variable parameter. Show that the equation of the locus P is b?z? — a?y? = a?b? .
If P(2,—7) is a given point and @ is a point on 22 + 9y* = 18, then find the equations of the
locus of the mid-point of PQ).
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11. If R is any point on the z-axis and () is any point on the y-axis and P is a variable point on R(Q)
with RP = b, PQ) = a. then find the equation of locus of P.

12. If the points P(6,2) and Q(—2,1) and R are the vertices of a APQR and R is the point on the
locus y = 22 — 3z + 4, then find the equation of the locus of centroid of APQR

13. If Q is a point on the locus of 22 + y? + 42 — 3y + 7 = 0, then find the equation of locus of P
which divides segment O() externally in the ratio 3:4,where O is origin.

14. Find the points on the locus of points that are 3 units from z-axis and 5 units from the point (5, 1).

15. The sum of the distance of a moving point from the points (4,0) and (—4,0) is always 10 units.
Find the equation of the locus of the moving point.

6.3 Straight Lines

Linear equations can be rewritten using the laws of elementary algebra into several different forms.
These equations are often referred to as the “equations of the straight line.”
In the general form the linear equation is written as:

ar+by+c=0 (6.4)

where a and b are not both equal to zero. The name “linear” comes from the fact that the set of
solutions of such an equation forms a straight line in the plane. In this chapter “line”, we mean a
straight line unless otherwise stated.

There are many ways to write the equation of a line which can all be converted from one to another
by algebraic manipulation. These forms are generally named by the type of information (data) about
the line that is needed to write down the form. Some of the important data are points, slope, and
intercepts

6.3.1 The relationship between the angle of inclination and slope

Definition 6.3 Y4 y

The angle of inclination of a straight line is the

angle, say ¢, made by the line with the z-axis

measured in the counter clockwise (positive) A 0 - B 0 N

direction. O] N X Oi / X
Figure 6.13

Definition 6.4

The slope or gradient of a straight line is a number that measures its “direction and steepness”.

The slope of a line in the plane containing the = and y axes, is generally represented by the letter m.
It can be measured in many ways as given below:

(i) When 6 is the angle of inclination of the line with the z-axis measured in the counter clockwise
direction then the slope
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m = tan@.
. .
When 6 is > = m = tan 5 is undefined.

(¥2, ¥2) 4B
(i) When (x1,1;) and (x9,ys2) are any two points on the line with
Ty # x1, then the slope is the change in the y coordinate divided
by the corresponding change in the x coordinate.
This is described by the following equation.

Ay =yp—y1

Gy opHF—
P

Ay ys—y1  wertical change / -
~ Ax  xy—xy  horizontal change
Figure 6.14

(iii) When the general form of the linear equation ax + by + ¢ = 0 is given, then the slope of the
line is
=——, b#0.
m=—7, b#

m is undefined when b = 0

The slope of a line can be a positive or negative or zero or undefined as shown below:

74 ) A
0=0 0=%
%
- < 1 £
o X o

. . Y Y x
Positive slope Negative slope Zero slope Undefined slope
y increases y decreases y does not change vy changes
as x increases as x increases as x increases x does not change

Figure 6.15
Definition 6.5

In a plane three or more points are said to be collinear if they lie on a same straight line.

Let A, Band C' be any three points on a plane. If the slope of AB is equal to the slope of BC (or AC),
then they are collinear.
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6.3.2 Intercepts of a Line

Definition 6.6

The intercept of a line is the point at which the line crosses
either the z-axis or the y-axis. 7

B

The z-intercept is a point where the y value is zero, and the y‘i”terceml \

y-intercept is a point where the z-value is zero. o= \ -
Therefore the intercepts of a line are the points where the line y x-intercept
intersects, or crosses, the horizontal and vertical axes. Figure 6.16

Therefore it is clear that

(i) the equation of the y-axis is x = 0.
(ii) the equation of the x-axis is y = 0.
In the figure OA is the z-intercept and OB is the y-intercept.

Different types of x and y Intercepts:

Yi

B
740—7

\

positive x-intercept

positive y-intercept positive y-intercept negative y- intercept

positive x-intercept
negative y- intercept

negative x-intercept ’

negative x-intercept ’

Figure 6.17

We have learnt the definition and detailed information about the points, slope and intercepts. Using
these information, let us recall the different forms of an equation of a straight line.

6.3.3 Different Forms of an equation of a straight line

Two conditions are sufficient to determine uniquely the equation of a straight line. Using the
combination of any two information from slope, intercepts and points, we can now form different
types of straight lines such as

(i) Slope and intercept form

(i) Point and Slope form

(iii) The two Point form

(iv) Intercepts form and two more special types are
(v) Normal form

(vi) Parametric form
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Now let us look at an important way of describing the relationship between two quantities using
the notion of a function.

(i) Slope and Intercept form

Proportional linear functions can be written in the form Vi
y = mx, where m is the slope of the line. Non
proportional linear functions can be written in the form y=mx+b

y=mxz+b bF#0 (6.5) < Tb >~

This is called the slope-intercept form of a straight line '
because m is the slope and b is the y-intercept. Figure 6.18

EIQ (1) when b = 0 and m # 0, the line passes through the origin and its equation is
Yy = mx.

(2) when b = 0 and m = 0, the line coincides with the x-axis and its equation is y = 0.

(3) when b # 0 and m = 0, the line is parallel to the x-axis and its equation is y = b.

(i) Point - Slope form:
Let m be the slope of the line and A (z1,y;) be the given y

point on the line. Let P (x,y) be any point other than A yoyL= i)
on the given line. Slope of the line joining A (xq,y;) and P, y)
L Y-l

P (x,y) is given by m =

(@.9)is g Y T — I A1, y1)

=y—y = m(x—1x1), (6.6) X

which is known as point-slope form. Figure 6.19

Q} Since, the slope m is undefined for lines parallel to the y-axis, the point-slope

form of the equation will not give the equation of a line through A (z1, y1)
parallel to the y-axis. However, this presents no difficulty, since for any such
line the abscissa of any point on the line is x;. Therefore, the equation of such a
line is x = x;.

(ii1) Two Points form

If (z1,1) and (x2, y2) are any two points on the line with xo # x1 andy; # ¥, then the slope
_ (Y2 — 1)
(2 — 21)

The equation using point- slope form, we get y — y; =

18

Y2 — U1

Rewriting the above equation, we get

y—y v 6.7) y

Y2 — 1 Ty — X1

y_yl X—Xl

(Xl, yl) Wl: X5 —Xq

This equation is called two points form.
Two points form can also be represented

in terms of the determinant as 0

rT—T1 Y— U

—0. .
To—T1 Yo — Y1 Figure 6.20
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If the intercepts of a line on thex-axis and the y-axis
are known then the equation of the line can also be
found using intercepts. Suppose z-intercept OA = a and
y-intercept OB = b, where a and b are non-zero, then the
line passes through two points A (a,0) and B (0, b) is

Yi
b
0]
A

y—0 z—a

b—0 0O—a

SR A 6.8)
a b

Figure 6.21

The above equation is called an intercept form.

Lines that pass through the origin or which are horizontal or vertical or violate the nonzero
condition on a or b cannot be represented in this form.

In most of the cases this form is used to draw the graph of the line in easy way.

Normal form:
Let A and B be the intercepts made by the line.

Let p be the length of the normal OP drawn from the
origin to a line AB, which makes an angle o with the x-axis.

)

OP
In right AOPA, OA4 = cosa and
OP
in right AOPB, OB = s (g — oz) =sino y
= — cosa A N X cosa +Y sina =p
OA  p
P
1 sin «v
and — = D
OB
D Lo
¢} A\ X

Using the above data in intercepts form

T Y Figure 6.22
AL A
OA OB
We get, zeosa | ysma
p

(6.9)

= xrcosa + ysina=p
is called the normal form of equation.
If p is positive in all positions of the line and if « is always measured from z-axis in the
positive direction, this equation holds in every case as shown in the figure.

y y y Y

a a

\ [N N

\ B B / A O X O 0 A X

P
P P P P
P > o
o < N B
(¢} A X A o} X
Figure 6.23
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(vi) Parametric form:
Parametric equations of a straight line is of the form

r=ar+zxandy = br+ 1y

where a and b are constants and 7 is the parameter.

=21 Y=

a b

—r(a£0, bA0).

Suppose we have the equation of the line
passing through the point ) (x1, y; ) and mak-
ing an angle 0 with z-axis. Let P (z,y) be a
point on the line at a distance r from (). Drop
perpendiculars ON and PM respectively from
() andP to the z-axis and perpendicular QR
to PM.

From the right AQRP

r—11 = QR =PQ cos = rcost

_ Figure 6.24
Therefore ———L — r  (6.10) e
cosf

Similarly, y — y; = RP = QP sinf = rsin6

Yy—uY1
:>—
sin 6

=7 (6.11)

From (6.10) and (6.11) we get

rT—x1  Y—U
cosf sin 0

(6.12)

where the parameter r is the distance between (1, y;) and any point (z,y) on the line. This is
called the symmetric form or parametric form of the line.

Q) The co-ordinates of any point on this line can be written as
(x1 4+ rcosf, y; + rsinf). Clearly coordinates of the point depend on the value
of r. This variable r is called parameter. Since r is a parameter the equations,
x =ux1+1rcosf, y =1y +rsinb, is called the parametric equations of the line.
The value of '’ is positive for all points lying on the line one side of the given
point and negative for all points lying on the line other side of the given point.

(vii) The general form of the equation of the straight line is

ar + by + ¢ =10, where a, b and ¢ are all not zeros
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The below table summarizes the types of straight lines related to the given information.

S.No | Information given Equation of the straight lines

1 Slope(m) and y-intercept (b) y=mx+b

2 Slope (m) and point (1, 1) y—y1 = m(z — x1)

3 Two points(xy, y1) and (22, y2) L —
Yo—Y1 T2— T

. . X Y

4 x-intercept (a) and y-intercept(b) -+ b= 1
a

5 Normal length (p) , angle () rcosa+ysina=p

6 Parametric form: parameter-r L _ N,

cos 6 sin 0
7 The general equation ar +by+c=0

If we have two variable quantities, then each can be represented by a variable. If the rate of change
of one variable with respect to the other variable is constant, then the relationship between them is
linear.

In linear equation, the choice of one as independent and other as a dependent may represent the
physical reality or may be convenient fiction. The independent variable is normally plotted on the
horizontal axis (z-axis), the dependent variable on the vertical axis (y-axis). That is the values of z
are always independent and y is dependent on those values of x.

The number scales on the two axes need not be the same. Indeed, in many applications different
quantities are represented by = and y. For example, x may represent the number of mobile phones
sold and y the total revenue resulting from the sales. In such cases it is often desirable to choose
different number scales to represent the different quantities. However, that the zero of both number
scales coincide at the origin of the two-dimensional coordinate system.

From the given information, to solve the problem using the concepts of straight lines, we have to
select suitably one of the six equations given above.

Example 6.7 Find the slope of the straight line passing through the points (5,7) and (7,5). Also find
the angle of inclination of the line with the z-axis.

Solution:
Let (x1,y;) and (x2,y2) be (5,7) and (7,5) respectively. Let 0 be y
the angle of inclination of the line with the z-axis AN
= 5—17
Slope of the line m = 22— L — — -
To — X1 7T—5 ' e
We know that m = tan . (.9 2
Thatis, tanf = —1 = f="" or 135° O3
(@) X
Slope and angle of inclination of the line with the z-axis are
3 .
respectively m = —1 and 0 = zﬂ Figure 6.25
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Example 6.8 Find the equation of a straight line cutting an intercept of 5 from the negative direction
of the y-axis and is inclined at an angle 150° to the z-axis.

Solution:
Y|

Given that the negative y intercept is 5 i.e., b = —5 and # = 150°
1

slope m = tan 150° = tan(180° — 30°) = — tan 30° = —— &

Slope and intercept form of the equation is y = mx + b. 0 X

1
Thatisy = ———=x — 5. N
V3 ‘\
z+vV3y+5vV3=0

Figure 6.26
. 3 1 .
Example 6.9 Show the points | 0, —5 ) (1,—1) and ( 2, —5 ) are collinear.
Solution: . N
Let A, B and C be (0, —5) ,(1,—1) and (2, —5) respectively.
3
-1+ 5 1
The sl fAB i ==
e slope o is 11_ 5 5
The sl f BC'i = -
e slope of BC is 5 1 5
Thus, the slope of AB is equal to slope of BC.
Hence, A, B and C' are lying on the same line.
R If the rate of change of one variable with respect to the other variable is constant, then

this constant rate of change can be taken as slope.(such as speed, constant increase or
constant decrease...). Also equations of straight lines depend on the coordinate axes
how we define it. Thus in real world problems the equations are not necessarily identical
but the path and distance will always be the same.

Example 6.10 The Pamban Sea Bridge is a railway bridge of length about 2065 m constructed
on the PalkStrait, which connects the Island town of Rameswaram to Mandapam, the main land of
India. The Bridge is restricted to a uniform speed of only 12.5 m/s. If a train of length 560 m starts
at the entry point of the bridge from Mandapam, then

(1) find an equation of the motion of the train.

(i1) when does the engine touch island
(iii)) when does the last coach cross the entry point of the bridge
(iv) what is the time taken by a train to cross the bridge.
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Solution:

<

Let the z-axis be the time in seconds the y-axis be the distance
in metres. Let the engine be at the origin O. Therefore the length
of the train 560 m is the negative y-intercept.

The uniform speed 12.5 m/s is the slope of the motion of the

distance )
. time |

Since we are given slope and y-intercept, the equation of the
line is

y =12.5x — 560
train. (speed =

O | Distance in metres

Time in seconds X

|
a1
D
o

y=mx+b (6.13)
Figure 6.27

(i) The equation of the motion of the train,

whenm = 12.5and b = —560,
iIsy = 12.52 — 560

(i1) When the engine touches the other side of the bridge (island)

y = 2065and b =0
2065 = 12.5z
r = 165.2 seconds.

(iii) When y = 0, the last coach cross the entry point of the bridge,

0 = 12.52z — 560
x = 44 .8 seconds.

(iv) When y = 2065, the time taken for the train to cross the other end of the bridge is given by

2065 = 12.5x — 560
x = 210 seconds.

(One may take the tail of the train as the origin and can find the equation of the straight line. It need
not be identical with the above equation, but the path traced out by the train, distance, time, etc.,will
be the same. Try it.)

Example 6.11 Find the equations of the straight lines, making the y- intercept of 7 and angle
between the line and the y-axis is 30°

Solution:
There are two straight lines making 30° with the y-axis.

Two Dimensional Analytical Geometry 252



www.thtextbooks.in

Y
From the figure, it is clear that the two lines make the angles 309

60° and 120° with the z-axis

Let m; be tan60° = v/3 and
ms be tan120° = tan(180° — 60°) = — tan 60° = —v/3

mlz\/g,mz = —vV3andb=17 -~ 120°
Equations of lines are y = myz +band y = moxr + 0 /c 0 AN X
¥
y = V3z+T7andy=—V3z+7
Figure 6.28
El“j Whenever two points are given, one can apply two points form or point and slope form.

Also when two intercepts are given, one can apply intercepts form or two points form
The following example, is solved in chapter V, using the concepts of sequence and
series. Let us solve this problem here, using the concepts of straight lines.

Example 6.12 The seventh term of an arithmetic progression is 30 and tenth term is 21.

(i) Find the first three terms of an A.P.
(i1) Which term of the A.P. is zero (if exists)
(111) Find the relation ship between Slope of the straight line and common difference of A.P.

Solution:
Since there is a constant increase or decrease in arithmetic progression, it is a linear function.
Let the x-axis be the number of the term and the y-axis be the value of the term.
Let (x1,y1) and (22, y2) be (7,30) and (10,21) respectively, using the equation

y—y1 = m(x—x1) we get

21 —-30
y—30 = 10_7(30—7)
y = -3z + 51 (6.14)

(i) Substituting x = 1,2 and 3 in the equation (??) we get the first three terms of AP as 48, 45,
and 42.

(i1) Substituting y = 0 in equation (??) we get
0=-32+51 =z=17.

That is seventeenth term of A.P. is zero.
(1i1) clearly the slope of the line —3 is equal to the common difference A.P.

From this example, slope of the line is equal to common difference of A.P. (Try to prove it)
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Example 6.13 The quantity demanded of a certain type of Compact Disk is 22,000 units when a
unit price is X 8. The customer will not buy the disk, at a unit price of ¥ 30 or higher. On the other
side the manufacturer will not market any disk if the price is ¥ 6 or lower. However, if the price
% 14 the manufacturer can supply 24,000 units. Assume that the quantity demanded and quantity
supplied are linearly proportional to the price. Find (i) the demand equation (ii) supply equation
(ii1) the market equilibrium quantity and price. (iv) The quantity of demand and supply when the
price is X 10.

Solution:
Let the z-axis represent the number of units in thousands and the y-axis represent the price in

rupees per unit.
YA

(i) For demand function, let (x1,y;) and (z2, y2) be (22,8)
and (0,30) respectively.
Using two point form, we get the demand function as

price in rupees

y—8  x—22
30—8 0-—22

= yp = —x + 30 (demand function). 0 number of units %
)
Figure 6.29
(ii) For supply function, let (x1, ;) and (23, y2) be (0,6) and (24,14)
respectively.
Using two point form, we get the supply function as

y—6  x—0
14—6 24—0

1
Ys = 51’ + 6(supply function).

(ii1) At the market equilibrium the demand equals to supply,

Thatis, yp =ys = —x+ 30 :§x+6
r =18 and y = 12.

Market equilibrium price is Rs12 and number of quantity is 18,000 units.
(iv) when the price y = 10, from the demand function yp = —x + 30, we get z = 20.
That is, the demand is 20,000 units.

1
Similarly from the supply function yg = 3% + 6, we get x = 12.
Hence, the supply is 12,000 units.

Example 6.14 Find the equation of the straight line passing through (— 1, 1) and cutting off equal
intercepts, but opposite in signs with the two coordinate axes.
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Solution:
y
Let the intercepts cut off from the axes be of lengths a and —a. /
.. Equation of the line is of the form 2
E N T—yY=a.
a a
Since it passes through (—1,1) Nz B X

= (-1)—-(1)=a=a=-2
Equation of the lineis z — y + 2 = 0.
Figure 6.30

Example 6.15 A straight line L with negative slope passes through the point (9, 4) cuts the positive
coordinate axes at the points P and (). As L varies, find the minimum value of |OP| + |OQ)|, where
O 1is the origin.

Solution:
Let m be the slope of the line L. Sinc